Что называется ошибкой управления
Основные понятия. Системы управления современными технологическими процессами характеризуются большим количеством технологических параметров
Системы управления современными технологическими процессами характеризуются большим количеством технологических параметров, число которых может достигать нескольких тысяч. Для поддержания требуемого режима работы, а в конечном итоге – качества выпускаемой продукции, все эти величины необходимо поддерживать постоянными или изменять по определенному закону.
Физические величины, определяющие ход технологического процесса, называются параметрами технологического процесса (температура, давление, расход, напряжение и т.д.). Параметр технологического процесса, который необходимо поддерживать постоянным или изменять по определенному закону, называется регулируемой величиной или регулируемым параметром. Значение регулируемой величины в рассматриваемый момент времени называется мгновенным значением. Значение регулируемой величины, полученное в рассматриваемый момент времени на основании данных некоторого измерительного прибора называется ее измеренным значением.
Согласно общепринятому определению, исполнительный механизм (сервопривод) это устройство, предназначенное для перемещения регулирующего органа в системах автоматического регулирования или дистанционного управления, а также в качестве вспомогательного привода элементов следящих систем, рулевых устройств транспортных машин и т. п. Изменение положения регулирующего органа (РО) вызывает изменение потока энергии или материала, поступающих на объект, и тем самым воздействует на рабочие органы машины, механизмы и технологические процессы, устраняя отклонения регулируемой величины от заданного значения. Исполнительный механизм не только изменяет состояние управляемого объекта, но и перемещает РО в соответствии с заданным законом регулирования при минимально возможных отклонениях. В большинстве случаев исполнительный механизм действуют от посторонних источников энергии, так как непосредственное управление исполнительным механизмом от первичных элементов регулирования (реле, датчиков и др.) невозможно вследствие их малой мощности, недостаточной для воздействия на регулирующий орган. Исполнительный механизм обычно состоит из двигателя, передачи и элементов управления, а также элементов обратной связи, сигнализации, блокировки, выключения.
Создание надежных и быстродействующих бесконтактных электрических аппаратов с высокими технико-экономическими показателями стало возможным благодаря прогрессу в области производства высококачественных магнитных материалов и полупроводниковых приборов. Развитие элементной базы, широкое применение микропроцессоров и других средств управляющей техники привело к созданию и разработке бесконтактных электрических аппаратов, обеспечивающих согласование микросредств управляющей техники и исполнительных механизмов. Это интегральные микросхемы, электрические аппараты на оптоэлектронных полупроводниковых приборах и на силовых транзисторных ключах. Широкое применение в системах управления индустриальными объектами находят бесконтактные реле на интегральных микросхемах (в частности на операционных усилителях), высокопомехоустойчивые логические элементы на интегральных микросхемах.
Модель процесса управления.Физические величины, характеризующие состояние объекта управления называются выходными переменными объекта. Их совокупность определяют как вектор выходных состояний объекта управления. Этот вектор должен удовлетворять определенным требованиям, предъявляемым как установившимся, так и динамическим режимам работы технического устройства. Совокупность предписаний, определяющих характер изменения вектора входных состояний объекта управления, называется алгоритмом его функционирования. Несмотря на многообразие технических устройств можно выделить 3 базовых алгоритма их функционирования. К ним относятся:
1. Алгоритм стабилизации, требующий постоянства вектора выходного состояния ОУ Y(t) и равенство его заданному значению YZ:
При этом заданное значение должно оставаться постоянным в течение достаточно долгого периода времени.
2. Программный алгоритм, для которого характерно изменение вектора выходного состояния ОУ по наперед известному закону или программе. В этом случае заданное значение вектора выходного состояния является известной функцией времени, то есть
3. Следящий алгоритмработы ОУ, характеризующийся тем, что требуемый закон изменения вектора выходного состояния объекта неизвестен. Следящий алгоритм может быть описан выражением:
где F0(t) – неопределенная функция времени.
Графическое представление алгоритмов функционирования для вектора выходного состояния, содержащего только одну компоненту, представлено на рис. 6.1.
| ||
Стабилизация | Программный | Следящий |
Рис. 6.1. Алгоритмы функционирования ОУ |
Для формирования требуемого алгоритма работы ОУ на него подается одно или несколько управляющих воздействий. Эти управляющие воздействия, скомпонованные в виде матрицы столбца, называются вектором управляющих воздействий. Взаимосвязь этих величин определяется как переходная характеристика ОУ b(t):
.
В случае многомерных ОУ переходная характеристика представляется в виде матрицы.
На практике вектор выходных состояний в процессе работы ОУ отклоняется от требуемого значения. Это вызывается взаимодействием объекта со средой его обитания и изменением параметров самого объекта управления. Взаимодействие ОУ с внешней средой характеризуется различного рода возмущающими факторами. Их совокупность называется вектором возмущающих воздействий на объект управления или внешним вектором возмущений.
Вторым важным фактором, влияющим на изменение вектора выходного состояния ОУ, является изменение параметров самого объекта в процессе его работы. Такие воздействия называют параметрическими, а их совокупность можно представить в виде вектора параметрических возмущений LP(t). На рис. 6.2 показано взаимодействие объекта управления с окружающей средой.
|
Рис. 6.2. Условия работы ОУ |
Еще одной причиной отклонения вектора выходного состояния от требуемого значения является инерционность ОУ, проявляющаяся при изменении вектора управляющих воздействий на объект. Очевидно, что для изменения вектора выходного состояния ОУ необходимо изменение вектора управляющих воздействий на этот объект. То есть имеет место следующая последовательность действий:
Для любого инерционного ОУ оказывается невозможным мгновенное изменение выходной переменной вслед за управляющим воздействием. При изменении управляющего воздействия на объект, обладающий некоторой инерционностью, возникает переходный процесс. В течение этого процесса вектор выходного состояния ОУ не будет соответствовать требуемому значению. Характер переходного процесса определяется динамическими свойствами ОУ и закона изменения управляющего воздействия. Один из возможных видов переходного процесса для инерционного ОУ показан на рис. 6.3.
Действие любого возмущающего фактора на объект управления приводит к отклонению значения вектора выходного состояния ОУ от требуемого значения. То есть имеет место соотношение:
Такое отклонение называется ошибкой управления объекта управления. Задачей теории автоматического управления является определение алгоритма управления, который обеспечивает минимальное или не превышающее необходимого отклонения вектора выходного состояния ОУ от требуемого значения.
| |
Рис. 6.3. Переходный процесс в ОУ |
Принцип действия системы автоматического регулирования (САР) заключается в том, чтобы обнаруживать отклонения регулируемых величин, характеризующих работу объекта или протекание процесса, от требуемого режима и при этом воздействовать на объект или процесс так, чтобы устранять эти отклонения.
Под управлением понимают процесс организации такого целенаправленного воздействия на объект управления, в результате действия которого последний переходит в требуемое состояние (по академику А. И. Бергу). Для решения этой задачи используются разнообразные управляющие устройства или регуляторы. Управляющим устройством называется устройство, обеспечивающее формирование управляющего воздействия на объект управления, соответствующего алгоритму его работы. Устройство, выполняющее эти функции без непосредственного участия человека, называется автоматическим управляющим устройством или регулятором.
Совокупность объекта управления и управляющего устройства, взаимодействие которых приводит к поставленной цели, называется системой автоматического управления (рис. 6.4). Система включает в себя, кроме ОУ и устройства управления, задающее устройство, которое формирует необходимый закон изменения требуемых значений вектора выходного состояния объекта управления. Регулирование состоит в достижении такой деятельности системы, при которой выравниваются все отклонения на выходе системы от заданного значения этого состояния. Заданное значение технического параметра может быть постоянным или переменным. В первом случае говорят о прямом регулировании, совмещенном с управлением. Во втором случае регулирование заключается в корректировке отклонений вектора выходных состояний системы от нормы каждого компонента этого вектора.
|
Рис. 6.4. Функциональная схема САУ |
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
ОШИБКА УПРАВЛЕНИЯ
Смотреть что такое «ОШИБКА УПРАВЛЕНИЯ» в других словарях:
ошибка управления — неправильное управление 1. Ошибка, допущенная в процессе эксплуатации. 2. Ошибка из за нарушения правил эксплуатации. [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в… … Справочник технического переводчика
ошибка управления в системе с обратной связью — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN loop error … Справочник технического переводчика
Ошибка резидента — «Ошибка резидента» … Википедия
Ошибка сегментации — (англ. Segmentation fault или сокращённо segfault) ошибка программного обеспечения, возникающая при попытке обращения к недоступным для записи участкам памяти либо при попытке изменения памяти запрещённым способом. В системах на основе … Википедия
Ошибка резидента (фильм) — «Ошибка резидента» … Википедия
ошибка градуировки — ошибка картушки Ошибка, возникающая в результате неточностей в градуировке картушки. [ГОСТ Р 52682 2006] Тематики средства навигации, наблюдения, управления Синонимы ошибка картушки EN error of the cardgraduation error DE Teilungsfehler der Rose… … Справочник технического переводчика
ошибка в показании компаса (магнитного) при повороте судна, вызываемая трением картушки о жидкость компаса — Ошибка, возникающая в результате трения, вызванного жидкостью, в которую погружен чувствительный элемент, и трением о шпильку при вращении котелка компаса. [ГОСТ Р 52682 2006] Тематики средства навигации, наблюдения, управления EN swirl error DE… … Справочник технического переводчика
ошибка от трения — Ошибка, возникающая в результате трения между топкой и шпилькой. [ГОСТ Р 52682 2006] Тематики средства навигации, наблюдения, управления EN error due to frictionfriction error DE Reibungsfehler FR erreur de frottementerreur due au frottement … Справочник технического переводчика
ошибка от эксцентриситета — Ошибка, возникающая в результате эксцентриситета топки на картушке. [ГОСТ Р 52682 2006] Тематики средства навигации, наблюдения, управления EN eccentricity error DE Exzentrizitätsfehler FR erreur d’excentricité … Справочник технического переводчика
ошибка чувствительной системы — Ошибка, которая представляет собой алгебраическую сумму коллимационной ошибки, ошибки от эксцентриситета и ошибки градуировки. [ГОСТ Р 52682 2006] Тематики средства навигации, наблюдения, управления EN directional error DE Richtungsfehler FR… … Справочник технического переводчика
6.5. Вектора: целей, состояния, ошибки управления, их соотношение
Для осознанной постановки и решения каждой из названных ранее или обеих задач теории управления совместно (когда одна сопутствует другой или они некоторым образом взаимно проникают друг в друга) необходимы три набора информации: вектор целей, вектор состояния, вектор ошибки управления.
Вектор[1] целей управления (а равно — самоуправления, где не оговорено отличие), представляющий собой описание идеального режима функционирования (поведения) объекта (процесса).
Вектор целей управления строится по субъективному произволу как иерархически упорядоченное множество частных целей управления, которые должны быть осуществлены в случае идеального (безошибочного) управления. Порядок следования частных целей в нём — обратный порядку последовательного вынужденного отказа от каждой из них в случае невозможности осуществления полной совокупности целей. Соответственно на первом приоритете вектора целей стоит самая важная цель, на последнем — самая незначительная, отказ от которой допустим первым.
Образно говоря, вектор целей — это список, перечень того, чего желаем, с номерами, назначенными в порядке, обратном порядку вынужденного отказа от осуществления каждого из этих желаний. Если несколько целей представляются равнозначными, то они в совокупности образуют интегральную цель на соответствующем приоритете вектора целей.
Одна и та же совокупность целей, подчинённых разным иерархиям приоритетов (разным порядкам значимости для управленца), образует разные вектора целей, что ведёт и к возможному различию в управлении, в том числе и вследствие возникновения различий в построении критериев оптимальности управления и расчёте их значений.
Дефективность вектора целей может быть возможной причиной низкого качества управления (вплоть до полной потери управления). Основные типы дефектов вектора целей приведены ниже:
Вектор целей управления может изменяться в процессе управления, будучи функцией времени (в обыденном понимании этого явления) либо функцией матрицы возможностей течения процесса управления (объективной меры бытия, как составляющей триединства материи-информации-меры) и субъективно избранной алгоритмики управления процессом. В этом случае вектор целей, строго говоря, не является «вектором» в математическом понимании этого термина, поскольку представляет собой множество векторов, характеризующих разные этапы процесса управления, упорядоченное в соответствии: 1) с матрицей возможностей и 2) разветвлениями алгоритмики управления процессом. Эта тема поясняется далее в комментариях к рис. 6.13-4 (в разделе 6.13). Памятуя об этом несоответствии терминологии ДОТУ нормам математики, мы, тем не менее, распространим и на этот случай употребление термина «вектор целей управления».
В некоторых версиях теории управления по отношению к этому случаю употребляется термин «дерево целей», что подразумевает наличие преемственной последовательности целей, которая может разветвляться в процессе управления, и которые должны быть осуществлены в ходе реального управления на разных этапах процесса. Однако и вариант с «деревом целей» не отвечает требованию универсальности терминологии, поскольку, как показывает практика применения аппарата сетевого планирования, процесс управления может не только разветвляться, но и разного рода частные процессы управления могут сливаться воедино по достижении каких-то общих промежуточных для них целей. В этом случае можно было бы именовать совокупность целей термином «сеть целей», однако он интуитивно непонятен. Поэтому мы отдаём предпочтение расширительному толкованию термина «вектор целей управления», включая в него и тот случай, когда вектор целей может изменяться в процессе управления, будучи функцией времени либо функцией матрицы возможностей течения процесса управления и субъективно избранной алгоритмики управления процессом.
Вектор (текущего) состояния имеет более сложную структуру, нежели вектор целей. Первый его блок — блок контрольных параметров, который вбирает в себя информацию, характеризующую реальное поведение объекта по параметрам, входящим в вектор целей.
Каждый из контрольных параметров в этом блоке может быть представлен в виде суммы трёх составляющих: первая характеризует «полезную отдачу» замкнутой системы (процесса управления), вторая представляет собой «собственные шумы» замкнутой системы, а третья — помехи, наводимые в ней извне. Собственные шумы системы и помехи, наводимые в ней извне, так или иначе снижают качество управления и потому их можно выделить в отдельные компоненты вектора текущего состояния, что породит соответствующие им компоненты в составе вектора целей. такой подход потребует и соответствующих управленческих мер, направленных на снижение уровней собственных шумов и помех в контрольных параметрах.
Либо при другом подходе к структурированию информации собственные шумы и помехи могут быть перенесены в правую часть уравнения на схеме рис. 6.5-1 — в состав вектора ошибки управления.
Названные два вектора (целей и состояния) образуют взаимосвязанную пару, в которой каждый из этих двух векторов представляет собой упорядоченное множество информационных модулей, описывающих те или иные параметры объекта, определённо соответствующие частным целям управления. Упорядоченность информационных модулей в векторе состояния повторяет иерархию вектора целей. Образно говоря, вектор состояния это — список, как и первый, но того, что воспринимается в качестве состояния объекта управления, реально имеющего место в действительности.
В подавляющем большинстве случаев непосредственное воздействие на параметры, входящие в вектор целей управления, оказывается невозможным. Именно это обстоятельство и вызывает потребность в организации управления путём решения задачи об устойчивости в смысле предсказуемости поведения и выявления параметров, на которые возможно оказать непосредственное воздействие, следствием которого будет желательное изменение контрольных параметров, входящих в вектор целей.
Реализация такого подхода (в подавляющем большинстве случаев неизбежного) приводит к тому, что размерность вектора состояния больше, чем размерность вектора целей за счёт включения в него параметров, связанных в матрице возможных состояний с параметрами, включёнными в вектор целей. Эти дополнительные параметры можно разделить на две группы:
Поскольку восприятие субъектом состояния объекта не идеально (во-первых, в силу искажения информации, исходящей от объекта, «шумами» среды, через которую проходят информационные потоки; во-вторых, оно носит характер, обусловленный особенностями субъекта в восприятии и переработке информации), вектор состояния всегда содержит в себе некоторую ошибку в определении истинного состояния, которой соответствует некоторая объективная неопределённость для субъекта управленца. Неопределённость объективна, т.е. в принципе не может быть устранена усилиями субъекта. Другое дело, что объективная неопределённость может быть как допустимой, так и недопустимой для осуществления целей конкретного процесса управления.
Вектор ошибки управления представляет собой «разность» (в кавычках потому, что разность не обязательно привычная алгебраическая): «вектор целей» – «вектор состояния». В него могут входить как измеримые отклонения вектора состояния от вектора целей, так и оценки (как это показано на схеме рис. 6.5-1 — ниже по тексту), необходимость в которых может возникать вследствие того, что вектор текущего состояния включает в себя некоторую неопределённость. Вектор ошибки управления описывает отклонение реального процесса от предписанного вектором целей идеального режима и также несёт в себе некоторую неопределённость, унаследованную им от вектора состояния. Образно говоря, вектор ошибки управления это — перечень неудовлетворённых желаний соответственно перечню вектора целей с какими-то измерениями или оценками степени неудовлетворённости каждого из них. Оценки могут быть построены на основе соизмеримых друг с другом численно уровней, либо численно несоизмеримых уровней, но упорядоченных ступенчато дискретными целочисленными индексами предпочтительности каждого из уровней в сопоставлении его со всеми прочими уровнями.
Помимо исходного различия вектора целей и вектора состояния в момент начала управления источниками ошибок управления реально являются: 1) алгоритмика выработки управляющего воздействия системой управления, которая в принципе не может гарантировать идеального управления с нулевыми компонентами вектора ошибки, 2) собственные шумы в замкнутой системе[3], 3) помехи извне, включающие в себя воздействие среды, а также и целенаправленные попытки перехвата управления со стороны иных субъектов.
Структура и соотношение информации, входящей в перечисленные вектора, характеризующие процесс управления, показаны на схеме рис. 6.5-1, приведённой ниже.
Если эту форму не удаётся заполнить метрологически состоятельной информацией, то это — показатель того, что задача управления не может быть даже поставлена, а не то, что решена.
Рис. 6.5-1. Структурирование информации, характеризующей процесс управления
Задача управления в своём существе — достичь целей, а равно — обнулить вектор ошибки управления.
Реально вектор ошибки не может быть сделан идеально нулевым как вследствие объективных причин, так и вследствие разного рода неточностей и запаздываний в процессе управления, которые обусловлены субъективными причинами в ходе организации управления. Соответственно этому обстоятельству реальное управление может протекать в одном из трёх режимов:
Аварийное управление — один из тех случаев, в которых иерархическая упорядоченность компонент вектора целей и его состав могут изменяться в процессе управления, что влечёт за собой изменение и всей структуры информации в задаче управления.
Разграничение нормального и допустимого управления носит либо субъективно обусловленный характер, либо диктуется самой задачей управления.
Также надо понимать, что в силу субъективизма управленцев, формула взаимосвязи трёх названных векторов, приведённая на схеме рис. 6.5-1 («вектор целей» – «вектор состояния» = «вектор ошибки управления»), допускает обмен местами в ней «вектора целей» и «вектора ошибки управления»: т.е. возможны ситуации, в которых вектор состояния, который с точки зрения одного субъекта-управленца — ошибка управления, для другого — успешно достигнутая цель.
[1] В наиболее общем случае под термином «вектор» подразумевается — не отрезок со стрелочкой, указывающей направление, а упорядоченный перечень (т.е. с номерами) разнокачественной информации. В пределах же каждого качества должна быть определена хоть в каком-нибудь смысле мера качества. Благодаря этому сложение и вычитание векторов обладают некоторым смыслом, определяемым при построении векторного пространства параметров. Именно поэтому вектор целей — не дорожный указатель «туда», хотя смысл такого дорожного указателя и близок к понятию «вектор целей управления». Кроме того компонентами вектора целей могут быть не константы, а функции одного или более аргументов.
[2] «Закольцованность» рангов имеет место в некоторых карточных играх: самая слабая карта — шестёрка, но только она бьёт туза. Аналогично этому может иметь место «закольцованность» иерархической упорядоченности по значимости целей в их полном перечне. Если «закольцованность» — неизбежность, то возможно разделение управленческой задачи на последовательные этапы, на каждом из которых «закольцованность» разрывается и иерархия вектора целей обретает определённость.
[3] Замкнутая система — объект управления и система управления им, связанные друг с другом каналами обмена информацией.
[4] Однако при этом надо помнить, что с точки зрения вычислительной математики два ЛЮБЫХ числа приближённо равны, и потому практически вопрос только в том: можно ли в осуществляемом процессе управления ненулевые компоненты вектора ошибки считать приближённо нулевыми?