Что называется обобщенной координатой

Обобщенные координаты

Содержание

Состояние физической системы

Подавляющее большинство физических систем может находиться не в одном, а во многих состояниях, описываемых как непрерывными (например, координаты тела), так и дискретными (например, квантовые числа электрона в атоме) переменными. Независимые «направления», переменные, характеризующие состояния системы, и называются степенями свободы.

Примеры

Обобщённые координаты

Понятие степени свободы связано с таким понятием, как размерность. В математике размерность — это количество независимых параметров, необходимых для описания состояния объекта, или, другими словами, для определения его положения в неком абстрактном пространстве.

При математическом описании состояния физической системы N степеням свободы отвечают N независимых переменных, называемых обобщёнными координатами.

В случае непрерывных степеней свободы соответствующие обобщённые координаты принимают непрерывный ряд значений. Однако можно рассматривать и дискретные степени свободы.

Примеры

См. также

Полезное

Смотреть что такое «Обобщенные координаты» в других словарях:

обобщенные координаты — Нрк независимые параметры Лагранжа Независимые между собой параметры, которые при наименьшем числе однозначно определяют положение механической системы. Примечание. Для голономной системы число обобщенных координат совпадает с числом степеней… … Справочник технического переводчика

ОБОБЩЕННЫЕ — СИЛЫ величиныQi, произведения к рых на элементарные приращения обобщённыхкоординат qi системы дают выражение элементарной работыдействующих на систему сил. Т. о., выражение элементарной работы сил, действующихна систему с s степенями свободы,… … Физическая энциклопедия

ЦИКЛИЧЕСКИЕ КООРДИНАТЫ — обобщенные координаты нек рой физич. системы, не входящие явно в выражение характеристпч. функции этой системы. При использовании соответствующих уравнений движения можно сразу получить для каждой Ц. к. соответствующий ей интеграл движения. Напр … Математическая энциклопедия

нормальные координаты — Обобщенные координаты системы, колебания которых являются несвязанными колебаниями. [ГОСТ 24346 80] Тематики вибрация EN normal coordinates DE hauptkoordinaten FR coordonnées normales … Справочник технического переводчика

циклические координаты — Обобщенные координаты механической системы, не входящие явно в функцию Лагранжа. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая… … Справочник технического переводчика

Нормальные координаты — 136. Нормальные координаты Обобщенные координаты системы, колебания которых являются несвязанными колебаниями Источник: ГОСТ 24346 80: Вибрация. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

Степени свободы (физика) — У этого термина существуют и другие значения, см. Свобода (значения). У этого термина существуют и другие значения, см. Степени свободы (значения). Степени свободы характеристики движения механической системы. Число степеней свободы… … Википедия

ГАМИЛЬТОНОВА СИСТЕМА — система обыкновенных дифференциальных уравнений для 2га неизвестных ( обобщенные импульсы ) и ( обобщенные координаты ), имеющая вид: где Н нек рая функция от наз. Гамильтона функцией, или гамильтонианом, системы (1). Г. с. наз. также… … Математическая энциклопедия

Источник

iSopromat.ru

Что называется обобщенной координатой

Обобщенные координаты – это независимые параметры однозначно определяющие положение механической системы в пространстве. Число обобщенных координат соответствует числу степеней свободы.

На рисунках 3.1, а; 3.1, б система имеет одну степень свободы, поэтому положение системы определяется одной обобщающей координатой s — на рисунке 3.1, а, φ — на рис. 3.1, б.

Обобщенные координаты могут иметь размерность длины (метр) или угла поворота (радиан).

На рисунке 3.1, в положение пластинки в плоскости может быть определено, если мы будем знать положение на этой плоскости какого-то отрезка, принадлежащего пластинке (например AB). А для этого нужно знать координаты какой-либо точки (например A) и угол наклона отрезка к какой-то оси, то есть в этом примере обобщенными координатами будут: xA, yA, φ.

Что называется обобщенной координатой

В теоретической механике принято обозначать обобщенные координаты символом qj. Например (рисунок 3.1, г) для системы с s степенями свободы обобщенными координатами будут:

т.е. параметры, с помощью которых можно определить положение любой точки механической системы:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Обобщенные координаты системы в теоретической механике

Содержание:

Обобщенные координаты системы:

Голономными называют свя­зи, налагающие ограничения только на положение точек системы и, следовательно, выражающиеся конечными соотношениями между коор­динатами этих точек

Голономные связи

Связи, с которыми мы встречались при решении задач по статике, ограничивали свободу перемещения тел и не зависели от времени. Мы назвали связью ограничения, стесняющие движение материальной точки или ме­ханической системы, осуществляемые дру­гими материальными объектами. Под это определение подходят также и такие связи, которые ограничивают не только перемещения, но и скорости точек механической системы. Рассмотрим следующий пример.

Пример. 1-й случай.

Шар радиуса к может передвигаться (скользить и перекатываться по плоскости xOy); 2-й случай: шар может только перекатываться без скольжения по плоскости. В первом случае связь может быть выражена уравнением zс=r, которое не содержит производных от координат по времени и накладывает ограничение только на положение точки C (центра шара). Во втором случае на шар наложена связь, заключающаяся в том, что скорость точки касания равна пулю, а следовательно, уравнение связи должно выражать условие, чтобы равнялись нулю производные по времени Что называется обобщенной координатой

В первом случае движение шара подчинено голономной связи, а во втором — неголономной. Вообще, голономными, или конечными, связями называют связи, накладывающие ограничения только на положение материальных точек системы. Они выражаются аналитически конечными соотношениями между координатами точек системы, причем в эти соотношения может явно входить и время. Обратим внимание на тот факт, что, продифференцировав по времени такое уравнение, мы получим уравнение связи, содержащее явно проекции скоростей точек. Но это уравнение явится лишь следствием того уравнения, из которого оно было получено путем дифференцирования. Оно будет автоматически выполняться при удовлетворении голономной связи.

Следовательно, если уравнение связи содержит проекции скоростей точек, то отсюда еще не следует делать вывод, что связь не является голономной. Нужно предварительно исследовать, возможно ли проинтегрировать это уравнение и получить из него уравнение, не содержащее проекций скоростей точек. Если это можно, то связь является голономной, в противном случае связь называют неголономной, или неинтегрируемой. Если среди связей, наложенных на систему, имеется хоть одна неголономная связь, то систему называют неголономной. В дальнейшем мы будем рассматривать лишь голономные системы.

Обобщенными координатами системы называют независимые друг от друга величины, вполне и однозначно определяющие возможные положения системы в произвольно выбранное мгновение

Обобщенные координаты

Положение в пространстве свободной материальной точки определяется тремя координатами, независимыми друг от друга. Такая точка имеет три степени свободы. Для определения положения в мгновение t системы, состоящей из n свободных точек, необходимо 3 n координат. Если система не свободна, то связи, наложенные на систему, выражают некоторые зависимости между координатами ее точек, а поэтому число независимых друг от друга координат, определяющих положение в данное мгновение всех точек несвободной системы, меньше чем 3 n.

Пример:

Система состоит из двух точек А и В. Согласно связям, наложенным на эти точки другими материальными телами, точки А и В могут двигаться только в плоскости хОу и находиться на постоянном между собой расстоянии r. Связи голономные них уравнения Что называется обобщенной координатой

Из этого примера видно, что вместо декартовых координат за независимые можно выбирать другие, связанные с ними величины, даже и другой размерности (угол). Эти независимые параметры называют обобщенными координатами системы и обозначают буквой q. Так, в рассмотренном примере мы могли выбрать следующие обобщенные координаты: 1) q1 = xA, q2 = yA, q3=xB или 2) q1B, q2 = уB, q3=φ. Возможен, разумеется, и другой выбор трех обобщенных координат этой механической системы.

Следовательно, под обобщенными координатами системы мы понимаем независимые друг от друга величины, обычно имеющие размерность длины [q] =L 1 M 0 T 0 или угла [q] = L 0 M 0 T 0 и определяющие полностью и однозначно возможные положения системы в данное произвольно выбранное мгновение. Но встречаются случаи, когда обобщенные координаты имеют размерность площади или объема, или других геометрических или даже механических величин.

Что называется обобщенной координатой(258)

Число степеней свободы голономной механической системы равно числу обобщенных координат

Если на систему наложены только голономные связи, то число обобщенных координат системы равно числу ее степеней свободы. Заметим, что к неголономным системам это правило не относится. В прикладной механике большое значение имеют полносвязные системы, т. е. механические системы с одной степенью свободы. К числу таких систем относится большинство механизмов. Чтобы определить положение полносвязной системы, достаточно одной обобщенной координаты.

Примеры:

Тело с двумя неподвижными точками имеет одну степень свободы: оно может поворачиваться вокруг неподвижной оси, проходящей через эти закрепленные точки. Для определения положения тела, занимаемого им в данное мгновение, нужна лишь одна обобщенная координата, например угол поворота φ.

Тело с одной неподвижной точкой имеет три степени свободы и его положение определяют тремя обобщенными координатами, например тремя углами Эйлера.

Кривошипно-ползунный механизм (рис. 238)—система с одной степенью свободы. Чтобы задать положение всех точек механизма, нет надобности задавать декартовы координаты всех точек, достаточно одной обобщенной координаты, например угла φ или дуги A0A. Одной обобщенной координатой и уравнениями связи Что называется обобщенной координатойположение механизма, занимаемое им в данное мгновение, определяется вполне и однозначно.

Регулятор Уатта имеет две степени свободы и для определения его положения нужно задать две независимые друг от друга величины, т. е. две обобщенные координаты, например угол (см. рис. 236) отклонения ручек от вертикали и угол поворота плоскости AOB вокруг оси Оу.

Обобщенные координаты, как и всякие координаты, характеризуют положение неподвижной системы или положение движущейся системы, занимаемое ею в данное мгновение. Чтобы охарактеризовать движение системы, надо выразить обобщенные координаты как непрерывные однозначные функции времени. Изменение каждой обобщенной координаты характеризует соответствующее изменение в положении системы. Так, в последнем из разобранных примеров (регулятор Уатта) изменение одной обобщенной координаты означает поворот системы вокруг вертикальной оси, а изменение другой обобщенной координаты выражает изменение наклона ручек к вертикальной оси.

Обобщенная скорость выражается первой производной от обобщенной координаты по времени

Обобщенная скорость

Для характеристики движения системы, определяемого обобщенной координатой qi=ql(t) не только в пространстве, но и во времени, возьмем первую производную от этой координаты по времени
Что называется обобщенной координатой(259)

Полученная величина является пространственно-временной характеристикой изменения одной из обобщенных координат. Ее называют обобщенной скоростью, соответствующей данной координате. Каждой обобщенной координате соответствует своя обобщенная скорость, поэтому число обобщенных скоростей в системе равно числу обобщенных координат.

Обобщенная координата обычно выражается длиной или углом, соответственно этому обобщенная скорость может иметь размерность либо скорости точки, либо угловой скорости тела.

Обобщенной силой называют скалярную величину, равную отношению суммы виртуальных работ всех сил системы при изменении только одной из обобщенных координат к вариации этой координаты

Обобщенная сила

Что называется обобщенной координатой(221)

Сумма работ всех реакций на данном виртуальном перемещении равна нулю (так как связи предполагаем идеальными), поэтому написанная сумма выражает работу всех активных сил системы. Из уравнений (258) найдем вариации декартовых координат точек системы, соответствующих приращению δqi обобщенной координаты qi при фиксированном (неизменном) значении других обобщенных координат:

Что называется обобщенной координатой

Эти вариации подставим в предыдущее выражение:

Что называется обобщенной координатой

Эту сумму виртуальных работ всех сил (или, что то же, всех активных сил), приложенных к системе, при изменении только одной из обобщенных координат qi мы можем записать как произведение вариации bqi этой координаты на скалярную величину

Что называется обобщенной координатой(260)

называемую обобщенной силой, соответствующей координате qi.

Если мы дадим воображаемое приращение какой-либо другой из обобщенных координат этой системы при фиксированном значении всех остальных обобщенных координат, то совершенно аналогично получим выражение обобщенной силы, соответствующей этой второй обобщенной координате. Таким образом, в системе столько же обобщенных сил, сколько в ней обобщенных координат.

Размерность обобщенной силы равна размерности работы, поделенной на размерность обобщенной координаты, а эта последняя обычно имеет размерность длины или угла. Следовательно, обобщенная сила может иметь размерность силы или же размерность момента силы в зависимости от размерности соответствующей обобщенной координаты.

Задача №1

Определить обобщенную силу в регуляторе Уатта (рис. 236 на стр. 424), соответствующую обобщенной координате а. Точечные грузы А и В имеют одинаковый вес P кГ, вес муфты C равен P1 кГ, а стержни имеют одинаковую длину 1 мм.

Решение. Декартовы координаты точек приложения силы, как функции обобщенной координаты (параметра а), их вариации и виртуальные работы всех активных и инерционных сил определены при решении задачи № 188. Для вычисления обобщенной силы воспользуемся некоторыми полученными при решении задачи № 188 данными и составим сумму виртуальных работ только активных сил при вариации δα:

Что называется обобщенной координатой

Разделив эту сумму виртуальных работ активных сил системы на δα, получим ответ.
Ответ. Q = —2l (P + P1) sin α kΓ∙ мм.

Разность производной по времени от обобщенного импульса и частной производной от кинетической энергии системы по обобщенной координате равна обобщенной силе:
Что называется обобщенной координатой

Уравнения Лагранжа в обобщенных координатах

Выразим в обобщенных координатах проекции скоростей точек системы на оси декартовых координат. Для этого продифференцируем по времени соотношения (258). Имеем:
Что называется обобщенной координатой

Возьмем теперь частные производные этих проекций скоростей Что называется обобщенной координатойпо какой-либо одной обобщенной скорости qi:

Что называется обобщенной координатой(261)

Эти соотношения справедливы только для голономных систем, и мы воспользуемся ими для вывода дифференциальных уравнений движения таких систем в обобщенных координатах. Возьмем частные производные от (215′) кинетической энергии Что называется обобщенной координатой Что называется обобщенной координатойсистемы по обобщенной координате qi и по обобщенной скорости qi:

Что называется обобщенной координатой

Что называется обобщенной координатой

Производную от кинетической энергии по обобщенной скорости называемую обобщенным импульсом, мы представим в другом виде, для чего воспользуемся соотношениями (261):

Что называется обобщенной координатой

Продифференцируем обобщенный импульс по времени:

Что называется обобщенной координатой

Что называется обобщенной координатой

Преобразуем первую сумму правой части этого равенства, приняв во внимание дифференциальные уравнения движения системы в форме (130): mkxk = Xk, mkyk = Yk, mkzk = Zk, вторую сумму, равную Что называется обобщенной координатой, перенесем влево:

Что называется обобщенной координатой

В правой части имеем обобщенную силу системы, соответствующую координате qi. Обозначая, согласно (260), правую часть этого равенства через Qi, мы получим уравнения движения материальной системы в обобщенных координатах, называемые иначе уравнениями (второго рода) Лагранжа:

Что называется обобщенной координатой(262)

Случай существования силовой функции

Если к механической системе приложены только силы поля и существует силовая функция U, то, имея в виду равенства (238),

Что называется обобщенной координатой

Или, так как U =— П, где П — потенциальная энергия (244),

Что называется обобщенной координатой

Подставляя в уравнения Лагранжа вместо обобщенной силы Q ее выражение через потенциальную энергию, получим удобную форму уравнений Лагранжа для случая консервативной системы:

Что называется обобщенной координатой(263)

Иногда этому выражению придают еще более простой вид, пользуясь тем, что потенциальная энергия П не зависит от обобщенных скоростей и потому Что называется обобщенной координатой; перенеся все члены в левую часть и прибавив Что называется обобщенной координатой, получим

Что называется обобщенной координатой

Что называется обобщенной координатой(264)

называют функцией Лагранжа.

Задача №2

В планетарном механизме изображенном на рис. 146, а, определить угловое ускорение колеса l при следующих условиях.

Передаточное число Что называется обобщенной координатой= 12. К колесу l приложен постоянный момент сопротивления M1, а к рукоятке IV—постоянный вращающий момент М. Колеса l и 1 l считать однородными дисками одинаковой толщины и из одного и того же материала. Массой рукоятки IV пренебречь. Механизм находится в горизонтальной плоскости.

Решение. Механизм имеет одну степень свободы, следовательно, его положение можно определить одной обобщенной координатой, а его движение—одним уравнением Лагранжа. В данном случае за обобщенную координату удобно выбрать угол φ4 поворота рукоятки (φ4 = q). Тогда обобщенная скорость системы равна угловой скорости рукоятки (q = ω4). Выразим в обобщенной скорости кинетическую энергию системы, которая равна сумме кинетических энергий первого и второго колес.

Момент инерции первого колеса Что называется обобщенной координатой, его угловая скорость ω1= 12q и
Что называется обобщенной координатой

Радиус второго колеса (см. задачу № 90) r2 = 5r1, следовательно, масса второго колеса в 25 раз больше массы первого, а его момент инерции в 625 раз больше. Скорость его центра равна q∙6r1, а его угловая скорость Что называется обобщенной координатой. Его кинетическую энергию определяем по формуле Кёнига:
Что называется обобщенной координатой

Кинетическая энергия механизма

Что называется обобщенной координатой

Чтобы подсчитать обобщенную силу, определим работу всех активных сил системы при вариации обобщенной координаты. Сообщим координате малое приращение δq, т. е. мысленно повернем рукоятку на угол δq4. Тогда первое колесо повернется на угол 12δq и произойдет работа

Что называется обобщенной координатой

Эта работа равна работе Qδq обобщенной силы, следовательно, обобщенная сила в этой задаче имеет размерность момента силы и равна

Составим уравнение Лагранжа (262). Частная производная от кинетической энергии системы по обобщенной скорости

Что называется обобщенной координатой

После дифференцирования по времени q заменится ‘q. Частная производная от кинетической энергии по обобщенной координате равна нулю. Следовательно,

Что называется обобщенной координатой

Из этого уравнения непосредственно определяем ускорение ε = q рукоятки механизма при заданных моментах.

Ответ. Что называется обобщенной координатой

Задача №3

Решить задачу уравнением Лагранжа.

Решение. В этой задаче будем выражать L в м, T в сек, F в кГ. Система имеет одну степень свободы. За обобщенную координату q выберем угол поворота φ1 первого вала. Тогда обобщенной скоростью q системы будет угловая скорость первого вала. Угловая скорость второго вала равна Что называется обобщенной координатой. Кинетическая энергия системы
Что называется обобщенной координатой

Вычислим величины, входящие в уравнение Лагранжа (262):

Что называется обобщенной координатой

Напишем уравнение движения системы:

Что называется обобщенной координатой

Малые колебания системы

Движение, при котором точки системы перемещаются последовательно в ту и в другую сторону от некоторых средних своих положений, называют колебательным.

Во многих областях техники часто приходится рассматривать колебательные движения механических систем, т. е. такие движения, при которых точки системы перемещаются последовательно то в ту, то в другую сторону относительно их некоторого среднего положения. Сюда относят вибрации машин и их деталей, возникающие при различных условиях, вибрации инженерных сооружений и их отдельных элементов, а также автомобилей, судов, самолетов и пр.

Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений мы будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения равновесия.

Колеблющиеся механические системы обычно являются консервативными, т. е. их колебания происходят в потенциальном поле, поэтому уравнения Лагранжа удобно писать в форме (263) и (264). Напомним, что в выражение потенциальной энергии входит произвольная постоянная С, несущественная для расчетов, так как в расчетах мы всегда встречаем не полную потенциальную энергию, а ее изменение. Но все же мы будем стараться так определить эту постоянную, чтобы потенциальная энергия системы при равновесном положении, т. е. при равенстве нулю обобщенных координат, тоже равнялась нулю. Тогда при отклонении системы от равновесного положения потенциальная энергия получается положительной, потому что равновесие йвляется устойчивым, а потенциальная энергия в этом положении (П = 0) согласно теореме Лежен Дирихле должна иметь минимум.

Рассмотрим несколько задач на малые колебания системы, причем для начала рассмотрим с позиций уравнений Лагранжа малые колебания физического маятника.

Задача №4

Определить малые колебания физического маятника без сопротивления на неподвижной оси (см. рис. 192 на стр. 334). Все данные по геометрии масс маятника считать заданными.

Решение. Задачу будем решать по (262). Направим оси декартовых координат как указано на чертеже (рис. 192). За обобщенную координату примем угол φ отклонения маятника от вертикали, т. е. будем отсчитывать обобщенную координату φ от положения устойчивого равновесия системы. Тогда обобщенная скорость (259)

Что называется обобщенной координатой

Выразим кинетическую энергию через обобщенную координату

Что называется обобщенной координатой

и вычислим производные, входящие в левую часть уравнения (262):

Что называется обобщенной координатой

Для определения обобщенной силы подсчитаем виртуальную работу при изменении обобщенной координаты

Что называется обобщенной координатой

И полученное выражение разделим на вариацию обобщенной координаты

Обобщенная сила имеет размерность момента силы, так как обобщенной координатой является угол.
После проделанных вычислений и внесения их в (262) уравнение Лагранжа принимает вид:

Это дифференциальное уравнение малых качаний физического маятника, выведенное другим способом, было проинтегрировано в § 45.

Ответ. Гармонические колебания с периодом

Что называется обобщенной координатой

Задача №5

Определить период малых колебаний маятника, состоящего из шарика, принимаемого за точку M массой m1, укрепленного на конце невесомого стержня AM длины l. Точка А стержня находится в центре однородного диска массы m2 и радиуса r. Диск может катиться без скольжения по горизонтальному рельсу. Стержень и диск жестко скреплены между собой (рис. 239). Движение маятника происходит в вертикальной плоскости.

Что называется обобщенной координатой
Рис. 239

Решение. Построим правую систему декартовых координат с началом в центре диска при положении устойчивого равновесия системы. Ось Oy направим вертикально вниз.

Определим связи, наложенные на систему. Диск может катиться по горизонтальному рельсу. Эта связь может быть выражена уравнением уА = 0.Но качение диска происходит без скольжения. Такую связь можно выразить условием, чтобы скорость υx точки касания диска равнялась нулю. Хотя связь наложена на скорость, но для диска, катящегося в своей плоскости, она является голономной (в отличие от катящегося по плоскости шара, рассмотренного выше). В самом деле, приняв центр диска за полюс и разложив плоское движение диска на переносное поступательное вместе с полюсом и относительное вращательное вокруг полюса, получим для точки касания:

Интегрируя, получаем второе уравнение связи
xA = rφ.
Следовательно, связь интегрируемая, т. е. голономная.

Система имеет одну степень свободы, ее положение определяется одной обобщенной координатой, а ее движение — одним уравнением Лагранжа. За обобщенную координату можно взять, например, абсциссу xA центра диска или угол φ отклонения маятника от вертикали, но не надо брать за обобщенные координаты обе эти величины и составлять два уравнения Лагранжа по каждой из координат, потому что обобщенные координаты должны быть независимыми друг от друга величинами, а величины xA и φ являются зависимыми и связаны соотношением xA = rφ. Число уравнений Лагранжа равно числу степеней свободы. Выбор той или иной обобщенной координаты зависит от нас. Мы выберем φ. Выразим в этой обобщенной координате и обобщенной скорости φ кинетическую и потенциальную энергии системы. Определим сначала координаты шарика М, принимаемого за материальную точку, учитывая, что по уравнению связи xA = rφ:

x= rφ—l sin φ; y = l cosφ.

Продифференцировав по времени, найдем проекции скорости:

Что называется обобщенной координатой

Определим квадрат полной скорости точки М:

и кинетическую энергию точки М:

Что называется обобщенной координатой

Кинетическую энергию диска определим по формуле Кёнига, учитывая, что xA = rφ:

Что называется обобщенной координатой

Кинетическая энергия системы равна сумме кинетических энергий точки M и диска:

Что называется обобщенной координатой

Потенциальная энергия определяется с точностью до произвольной постоянной (см. § 49) и этим обстоятельством следует воспользоваться так, чтобы в положении равновесия, при котором все обобщенные координаты равны нулю, потенциальная энергия также равнялась нулю. По теореме Дирихле, равновесие устойчиво, если около этого положения имеется область, в которой потенциальная энергия является определенно-положительной функцией обобщенных координат. Это имеет место в нашем случае:

П= m1gl (l — cos φ) (при φ = 0 П = 0; при φ ≠ О П > 0)

Функция Лагранжа L=T — П:

Что называется обобщенной координатой

Подсчитаем величины, входящие в уравнение (264):

Что называется обобщенной координатой

Что называется обобщенной координатой

Что называется обобщенной координатой

Что называется обобщенной координатой

Что называется обобщенной координатой

Что называется обобщенной координатой

Колебания малые, и мы полагаем sin φ ≈ φ, cos φ ≈ 1 и пренебрегаем малыми величинами второго и высшего порядка, а также произведениями малых величин. Уравнение движения системы принимает вид:

Что называется обобщенной координатой

Что называется обобщенной координатой

Интегрируя, получим уравнение гармонических колебаний (см. §39). Конечно, частота этих колебаний не может зависеть только от масс, но зависит и от их распределения. Система представляет собой своеобразный физический маятник, и квадрат частоты свободных колебаний пропорционален статическому моменту веса и обратно пропорционален моменту инерции маятника относительно мгновенной оси.

Ответ. Что называется обобщенной координатой

Задача №6

Определить частоту свободный поперечных колебаний двухопорной балки, изображенной на рис. 240. На балке находится груз весом mg; расстояния от груза до опор балки равны а и b. Сечеиие и материал балки считать известными, весом балки пренебречь.

Что называется обобщенной координатой
Рис. 240

Решение. Система имеет одну степень свободы. Построим декартовы координаты с началом в центре масс груза при равновесном положении системы и направим ось Oy вертикально вниз. За обобщенную координату системы примем ординату ус центра масс.

Выразим в обобщенной координате и обобщенной скорости кинетическую и потенциальную энергии системы. Массой балки пренебрегаем, и кинетическая энергия системы равна кинетической энергии груза при его поступательном движении:
Что называется обобщенной координатой

Несколько сложнее определить потенциальную энергию, потому что система находится в потенциальном поле силы тяжести и в потенциальном поле упругости балки и полная потенциальная энергия П = П1 + П2. Потенциальная энергия системы в поле силы тяжести

Потенциальную энергию сил упругости найдем из разности двух частных ее значений: при прогибе (j+y) и при нулевом положении, при котором прогиб балки в месте расположения груза равен f:

Что называется обобщенной координатой

Что называется обобщенной координатой

Заметим, что при равновесном положении системы потенциальная энергия, согласно теореме Дирихле, должна иметь минимум, а потому ее производная

Что называется обобщенной координатой

должна обратиться в нуль, если вместо у подставить нуль — его значение, соответствующее равновесному положению системы,

Что называется обобщенной координатой

Следовательно, потенциальная энергия системы

Что называется обобщенной координатой

Здесь с—коэффициент жесткости балки и, поскольку сечение и материал балки известны, может быть определен по формулам сопротивления материалов:

Что называется обобщенной координатой

где E—модуль упругости материала, Jэ—экваториальный момент поперечного сечения балки.
Определим теперь члены уравнения (263):

Что называется обобщенной координатой

Что называется обобщенной координатой

После подстановки имеем

Что называется обобщенной координатой

Это уравнение выражает малые колебания системы. Разделив «коэффициент жесткости» с на «коэффициент инерции» т, найдем квадрат частоты колебании системы, и для получения ответа остается только извлечь квадратный корень.

Ответ. Что называется обобщенной координатой

Малые колебания бифилярного подвеса

Задача №7

К концам М1 и М2 тонкого однородного стержня (рис. 241, а) массы m и длины 2α подвязаны две невесомые нити одинаковой длины l. Верхние концы N1 и N2 нитей неподвижно закреплены на горизонтальной прямой на расстоянии 2α друг от друга. Стержень повернули на малый угол вокруг центральной вертикальной оси и отпустили без начальной скорости. Исследовать малые колебания.

Что называется обобщенной координатой
Рис. 241

Решение. При заданном движении будет изменяться высота центра масс стержня, но он не может отклоняться в сторону. Положение системы определяется высотой центра масс, углом поворота стержня вокруг вертикальной оси и углом отклонения нитей от вертикали. Но эти параметры зависят друг от друга, система имеет одну степень свободы, положение ее определяется одной обобщенной координатой, а движение —одним уравнением Лагранжа. Это уравнение удобно записать в форме (263), так как система находится в потенциальном поле тяжести и единственной активной силой системы является вес стержня.

За обобщенную координату нельзя выбрать высоту центра масс, потому что обобщенная координата должна однозначно определять положение системы, а каждому положению центра масс соответствуют два положения системы. Угол поворота стержня вокруг вертикальной оси можно принять за обобщенную координату, но удобнее в качестве таковой выбрать угол наклона нитей к вертикали, так как через этот угол легко выразить потенциальную энергию системы. Построим прямоугольную систем) координат, как показано на рисунке. Пусть в произвольное мгновение t угол поворота стержня был α, а угол наклона нитей О (рис. 241, б). Спроецируем стержень на плоскость хОу (рис. 241, в). Равнобедренный треугольник M»OM1 и прямоугольный треугольник N1M’M имеют равные стороны М’М = M1M»:

Что называется обобщенной координатой

Эти два равенства позволяют выразить угол α в обобщенной координате Что называется обобщенной координатой:

Что называется обобщенной координатой

Определим в обобщенной координате и положение центра масс:

zC = l — l cos Что называется обобщенной координатой

Переходим теперь к вычислению входящих в (263) кинетической и потенциальной энергии системы.
Кинетическую энергию определим по формуле Кёнига, но чтобы выразить ее в обобщенных координате и скорости, продифференцируем по времени выражения, полученные для zс и α:

Что называется обобщенной координатой

Подставляя эти величины в (217) и учитывая, что стержень длиной 2a имеет момент инерции Что называется обобщенной координатойполучим довольно сложное выражение:

Что называется обобщенной координатой

При малых колебаниях можно положить cos 2 Что называется обобщенной координатой=l и sin 2 Что называется обобщенной координатой= 0:

Что называется обобщенной координатой

Вычисляя потенциальную энергию П системы, так определим постоянную С, чтобы П обращалось в нуль при 0 = 0:

П = mgl (1 — cos Что называется обобщенной координатой).

Как видно из этого равенства, при Что называется обобщенной координатой= 0 потенциальная энергия системы имеет минимум, что, по теореме Дирихле (см. § 49), означает устойчивое равновесие. Разложим cos Что называется обобщенной координатойв ряд. Тогда

Что называется обобщенной координатой

Отбросив все члены выше второго порядка, получим приближенно

Что называется обобщенной координатой

Теперь вычислим члены уравнения Лагранжа:

Что называется обобщенной координатой

Подставляя в (263), получим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Что называется обобщенной координатой

Решение его нам хорошо известно. Оно выражает малые колебания системы, период которых:

Что называется обобщенной координатой

Заметим, что если к стержню присоединить тело с неизвестным моментом инерции и из опыта определить период τ1 колебания бифилярного подвеса вместе с телом, то можно определить момент инерции тела.

Ответ. Малые колебания с периодом Что называется обобщенной координатой

Колебания системы с двумя степенями свободы

Малые колебания системы с двумя степенями свободы являются линейным наложением двух главных колебаний

Малые колебания системы с двумя степенями свободы около положения устойчивого равновесия, описываемые изменением обобщенных координат, представляют собой линейные наложения двух так называемых главных, пли собственных, колебаний системы. В каждом из главных колебаний между амплитудами имеется постоянное соотношение, зависящее от параметров системы, но не зависящее от начальных данных. Каждому из главных колебаний соответствует своя собственная частота, в общем случае отличная от частоты другого собственного колебания системы, и фаза. Колебание системы с двумя или с большим числом степеней свободы, представляющее линейное наложение гармонических колебаний, обычно является сложным и может оказаться даже не периодическим. Поэтому выражения частота или период колебаний для системы, у которой число степеней свободы больше единицы, имеет смысл только по отношению к отдельным главным колебаниям системы. В системе с двумя степенями свободы нетрудно так подобрать начальные данные, чтобы какое-либо одно из двух главных колебаний отсутствовало, тогда можно наблюдать оставшееся главное колебание системы.

Решим задачу на малые колебания системы с двумя степенями свободы.

Двойной математический маятник

Задача №8

Что называется обобщенной координатой
Рис. 242

Решение. По условию, маятник движется в одной вертикальной плоскости; система имеет две степени свободы и движение описывается двумя уравнениями Лагранжа. Система находится в потенциальном поле тяжести и никаких активных сил, кроме сил тяжести, на систему не действует, поэтому уравнения Лагранжа напишем в виде (263).

Выберем за обобщенные координаты углы О и φ наклона нитей к вертикали и выразим через них декартовы координаты точек

Что называется обобщенной координатой

Продифференцировав по времени, возведя в квадрат и складывая, найдем квадраты скоростей точек:

Что называется обобщенной координатой

Что называется обобщенной координатой

Теперь легко вычислить кинетическую энергию T системы:

Что называется обобщенной координатой

Что называется обобщенной координатой

Определяя потенциальную энергию П, выберем так произвольную постоянную С, чтобы при равновесии системы П равнялось нулю:

Что называется обобщенной координатой

Теперь потенциальная энергия системы при любых значениях обобщенных координат выражается равенством

Что называется обобщенной координатой

При Что называется обобщенной координатой= φ = 0 величина П равна нулю, при остальных значениях П > 0, т. е. П является определенно положительной функцией обобщенных координат.

Подсчитаем члены уравнений (263) Лагранжа:
Что называется обобщенной координатой

Что называется обобщенной координатой

Подставляя эти величины в уравнения (263), получим следующие точные уравнения движения системы:Что называется обобщенной координатой

Ограничимся малыми колебаниями системы и заменим косинусы единицей, а синусы малых углов — углами. Пренебрежем членами, содержащими квадраты или произведение скоростей, и для упрощения записи обозначим m2:m1 = μ. Уравнения примут вид:

Что называется обобщенной координатой

Второе уравнение позволяет упростить первое:

Что называется обобщенной координатой

Частные решения этой системы уравнений мы будем искать в виде

Что называется обобщенной координатой

т. е. в предположении, что обе обобщенные координаты изменяются гармонически, с одинаковыми частотами и фазами, но с разными амплитудами. Подставляя значения углов и их вторых производных в дифференциальные уравнения и сокращая на sin (kt + α), найдем

Что называется обобщенной координатой

Эта система двух уравнений, линейных относительно B1 и B2, может иметь отличные от нуля решения, если определитель системы равен нулю:
Что называется обобщенной координатой

Что называется обобщенной координатой

В теории колебаний это уравнение называют вековым уравнением, или уравнением частот, так как оно позволяет определить частоты главных колебаний системы. При условиях нашей задачи это решение записано в ответе. Оба периода главных колебаний различны между собой и зависят от отношения μ масс точек и от длины l1 и l2 нитей. Один из периодов близок к периоду качаний математического маятника длины l2, другой — к периоду маятника длины l1. Изменяя длину одного из маятников, мы можем период соответствующего главного колебания сделать больше или меньше периода второго главного колебания, однако мы не смогли бы добиться, чтобы оба главных периода качания двойного маятника были бы в точности одинаковы. Этот парадокс был открыт Стоксом и объясняется тем, что написанное выше уравнение частот не имеет одинаковых корней, при которых возможны устойчивые колебания двойного маятника.

Ответ. Что называется обобщенной координатой

Задача №9

В условии задачи вместо жесткого соединения невесомого стержня МЛ с диском сделано шарнирное соединение в точке Л, остальные условия не изменены (рис. 243).

Что называется обобщенной координатой
Рис. 243

Решение. В отличие от системы, рассмотренной в задаче № 195, здесь система имеет две степени свободы и движение ее может быть описано двумя уравнениями Лагранжа. За обобщенные координаты примем независимые величины φ и хА. При подсчете кинетической энергии скорость точки А мы уже не можем определять как rφ, а должны писать хА. Выражение потенциальной энергии остается прежним и функция Лагранжа имеет вид

Что называется обобщенной координатой

Вычислим члены уравнений Лагранжа:

Что называется обобщенной координатой

Что называется обобщенной координатой

Что называется обобщенной координатой
Что называется обобщенной координатой

Что называется обобщенной координатой

Напишем оба уравнения Лагранжа:

Что называется обобщенной координатой

Что называется обобщенной координатой

Мы ищем период малых колебаний системы, поэтому, допустив применяемые в подобных случаях упрощения, перепишем эти уравнения в таком виде:

Что называется обобщенной координатой

Определяя Что называется обобщенной координатойиз первого уравнения и подставляя во второе, получим

Что называется обобщенной координатой

Множитель, стоящий перед обобщенной координатой, выражает частоту колебаний.
Ответ. Период малых колебаний маятника
Что называется обобщенной координатой

Задача №10

Составить дифференциальные уравнения свободных вертикальных колебаний автомобиля, происходящих параллельно плоскости его симметрии, если масса приведенной в колебание системы pa⅞ιιa т, а момент инерции относительно поперечной оси, проходящей через центр масс, равен Что называется обобщенной координатой.

Решение. На рис. 244 вверху изображен автомобиль, а внизу его динамическая схема. Деформации кузова пренебрежимо малы по сравнению с осадкой опор, поэтому в динамической схеме мы считаем раму совершенно жесткой. Кроме того, мы полагаем, что горизонтальные колебания системы невозможны.

Что называется обобщенной координатой
Рис. 244

Построим оси декартовых координат с началом в центре масс при равновесном положении системы, направив ось ординат по вертикали вниз. Система обладает двумя степенями свободы и за обобщенные координаты ql и q2 примем ординату центра масс и угол наклона рамы к горизонтальной плоскости.
Кинетическую энергию системы определим по формуле Кёнига:

Что называется обобщенной координатой

Для определения потенциальной энергии заметим, что если рама автомобиля опустится на q1 и при этом наклонится на q2, то задняя опора сожмется на q1+ αq2, а передняя на q1+ bq2. Учитывая жесткости рессор и пиевматиков, обозначим через c1 и c2 приведенные жесткости задней и передней подвески автомобиля. Тогда потенциальную энергию системы определим аналогично тому, как это было сделано в примере § 49:

Что называется обобщенной координатой

Подставляя найденные значения T и П в уравнения Лагранжа, получим ответ.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *