Что называется материей в физике
Материя (физика)
Мате́рия (от лат. māteria «вещество») — объективная реальность, содержимое пространства, одна из основных категорий науки и философии, объект изучения физики.
Физика описывает материю как нечто, существующее в пространстве и во времени (в пространстве-времени) — представление, идущее от Ньютона (пространство — вместилище вещей, время — событий); либо как нечто, само задающее свойства пространства и времени — представление, идущее от Лейбница и, в дальнейшем, нашедшее выражение в общей теории относительности Эйнштейна. Изменения во времени, происходящие с различными формами материи, составляют физические явления. Основной задачей физики является описание свойств тех или иных видов материи и ее взаимодействия
Содержание
Основные виды материи [источник не указан 1283 дня]
Поле, в отличие от вещества, не имеет внутренних пустот, обладает абсолютной плотностью.
Материальные объекты неясной физической природы
Вещество
Классическое вещество может находиться в одном из нескольких агрегатных состояний: газообразном, жидком, твёрдом, аморфном или в виде жидкого кристалла. Кроме того, выделяют высокоионизованное состояние вещества (чаще газообразного, но, в широком смысле, любого агрегатного состояния), называемое плазмой. Известны также состояния вещества, называемые конденсат Бозе — Эйнштейна и кварк-глюонная плазма.
Элементарные частицы и поля
Материя в общей теории относительности
Согласно укоренившейся терминологии материальными полями в общей теории относительности называют все поля, кроме гравитационного.
Примечания
См. также
Полезное
Смотреть что такое «Материя (физика)» в других словарях:
Материя (философия) — В Викисловаре есть статья «материя» У этого термина существуют и другие значения, см. Материя. Материя  … Википедия
Материя — (от лат. māteria «вещество»): В Викисловаре есть статья «материя» Материя (физика) фундаментальное физическое понятие. Материя (философия) философская категория для обозначения объективной реальности. то же, что … Википедия
физика — ▲ наука ↑ относительно, основа, материя физика наука об основах строении материи. механика. статика. кинематика. динамика. магнитогидродинамика. термодинамика. кинетика. электрохимия. физическая химия. кристаллография. металлофизика.… … Идеографический словарь русского языка
МАТЕРИЯ — одно из наиболее многозначных филос. понятий, которому придается один (или некоторые) из следующих смыслов: 1) то, определяющими характеристиками чего являются протяженность, место в пространстве, масса, вес, движение, инерция, сопротивление,… … Философская энциклопедия
МАТЕРИЯ — МАТЕРИЯ. Термин М. употребляется для обозначения двух понятий: М. как категории философской и М. как категории физики и естественных наук. М. как философская категория. «Материя есть философская категория для обозначения объективной… … Большая медицинская энциклопедия
МАТЕРИЯ И ДВИЖЕНИЕ — философские категории, являющиеся мировоззренческими основаниями науки в рамках материалистнч. философских учений. С точки зрения материалистич. диалектики, материальное единство мира, представляющего собой движущуюся материю, служит философским… … Физическая энциклопедия
ФИЗИКА — ФИЗИКА, наука, изучающая совместно с химией общие законы превращения энергии и материи. В основе обеих наук лежат два основных закона естествознания закон сохранения массы (закон Ломоносова, Лавуазье) и закон сохранения энергии (Р. Майер, Джауль… … Большая медицинская энциклопедия
Материя — Материя ♦ Matière Не следует смешивать научное понятие материи, относящееся к физике и развивающееся вместе с ней, с философским понятием (категорией) материи, которое также может эволюционировать в зависимости от появления тех или иных… … Философский словарь Спонвиля
ФИЗИКА — (греч. τὰ φυσικά – наука о природе, от φύσις – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших… … Философская энциклопедия
Физика — Физика ♦ Physique Все, что относится к природе (от греческого physis), в частности – наука, изучающая природу (ta physika). Если природа – все, как я полагаю, значит, физика призвана вместить в себя все прочие науки. Впрочем, это… … Философский словарь Спонвиля
Материя во Вселенной. Материя, вещество, поле, час
Это первая важная для понимания позиция.
Вторая, важная для понимания позиция это то что
материей не являются информация и абстракции.
И применительно к информации материальным может быть только носитель информации, а не сама информация.
То есть материя отдельно, пространство отдельно, и отдельно информация, все фантазии, образы, мыслеформы и глюки – все это отдельно. Они материей не являются.
Мы не сможем приснившейся дедушке гантелей разбить бабушкин телевизор.
Исходя из определение материи как «существующее в пространстве, обладающее свойствами содержание»), мы легко можем отличать материальное от нематериального, например, чем настоящий материальный (существующий в реальности) пингвин отличается от воображаемого нематериального (несуществующего в реальности).
Мы не сможем облить воображаемого пингвина краской, или закидать яйцами. Краска к нему не прилипнет, а от яиц он легко увернётся ;.
А поле с собой атомы не взяли, зацепиться друг за друга было нечем, так насквозь и проскочили.
Никакого столкновения эти атомы и не заметили, не могли заметить.
Каков совокупный объем составляющих атом дискретных объектов?
Сколько там в этом атоме мяска? Сколько там того, чего можно пощупать и какой объем оно занимает? Иногда атомы рисуют очень мясистыми. Иногда не очень.
Но если рассматривать подробнее, то между частицами есть расстояние, и каждый меньший элемент, в свою очередь опять же планетарен, а значит дискретная материя опять же занимает незначительную часть от общего объема. И это все стремится практически к нулю.
То есть изображать надлежит не мясистый атом, а тощенький.
Давайте смоделируем атом без поля.
А чтобы было наглядно, возьмем пол эскадрильи обычного размера мух и пусть они летят над московской кольцевой дорогой, прямо над машинами по большому кругу.
А в центре, в районе арбата пусть скачет главная такая протонная мушильда, а остальные мухи пусть вокруг неё главной по кольцу летают не приближаясь.
Мы получили вполне пристойную мушиную модель атома без полей.
А теперь давайте где ни будь в Лапландии разместим вторую такую же мушиную модель атома и начнем обе эти модели друг к другу приближать.
Пусть они по взрослому, летят друг на друга.
Какова вероятность, что при сближении моделей этих двух атомов они друг за друга зацепится?
И чем они зацепятся?
Жужжания много, а поля вообще нет.
Даже если какие-то две мухи друг другу точно в лоб попадут – то и в этом случае они не смогут зацепиться. Второй атом это тоже планетарная система, практически пустота.
Вероятность зацепа никакая. Цепляться без поля нечем.
Два атома при таких условиях свободно пролетают сквозь друг друга.
При такой геометрии без поля это один сплошной сквозняк.
Мы бы в принципе не смогли бы столкнуть никакие две элементарные частицы если бы у них не было поля.
Кирпичи бы сквозь друг друга замечательно пролетали.
Вот собственно, какую роль играет поле.
Без поля мы в принципе не имеем возможности взаимодействия ни на макро ни на микро уровне.
Идём дальше:
Каковы свойства поля?
Поле не имеет ни внутренней ни наружной дискретности.
То есть не имеет разрывов, а так же не имеет внешних границ как таковых.
Понять геометрию поля можно из графика распределения воздействия на расширяющуюся сферу:
График стремится к нулю но не обнуляется. Как бы далеко мы не удалялись от источника поля
Поле ослабевает но не исчезнет. Границы у поля как таковой нет.
Кроме того поле упруго.
(Магнит)
Поле фундаментально упруго, недискретно и не обладает массой.
Определение поля:
Поле – особый не обладающий массой вид материи, представляет собой непрерывный объект, расположенный в пространстве, в каждой точке которого на частицу действуют определенные по величине и направлению уравновешенные либо неуравновешенные силы.
И опять же мы не забываем, что это давно известная информация
и в рамках физической концепции вещество и поле традиционно противопоставляются друг другу как два вида материи, у первого из которых структура дискретна, а у второго— непрерывна.
Заглубимся в матчасть:
Первое что надо понимать, это то, что вся вселенная на макроуровне равномерно заполнена вещественной материей, а значит, равномерно заполнена полем.
Применительно к частицам надлежит понимать, что бытующее в науке разделение материи на категории не совсем строгое.
В литературе порой допускаются нестрогие некорректные трактовки.
Свободные частицы обладающие массой по современной научной моде относятся в самостоятельную категорию, а частицы не обладающие массой покоя в ряде случаев нестрого трактуются как поле.
И в этом месте для многих наступает недоразумение известное как корпускулярно волновой дуализм.
Причины этого мыслительного явления мы уже отдельно объясняли (в разделе корпускулярно волновой дуализм). Повторно останавливаться не будем.
В этом месте достаточно напомнить, что в научном смысле и частицы и поле и волна это по прежнему, самостоятельные понятия.
И это требование первого закона логики, который гласит:
«…иметь не одно значение — значит не иметь ни одного значения; если же у слов нет значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности — и с самим собой; ибо невозможно ничего мыслить, если не мыслить что-нибудь одно».
Либо поле, либо частица.
Далее:
Давайте рассмотрим какие взаимные связи присущи материи.
Кирпич это материя, кирпич состоит из той части материи которую принято называть веществом
Но это еще не все.
Имеется связка вещества (а значит и любого кирпича) с полем. Каждый кирпич находится в совокупном вселенском поле.
И кроме того каждый кирпич имеет собственное поле.
Если говорить упрощая, мы можем назвать это поле полем кирпича, можем назвать гравитационным полем кирпича.
В природе нет ни одного кирпича, не окруженного собственным полем.
поле сопутствует каждому кирпичу.
Вся вещественная материя в природе имеет поле.
И в этом плане необходимо понимать, что в природе не существует вещества не имеющего своего частного поля.
И любой материальный объект в фундаментальном физическом смысле представляет из себя совокупность вещества и поля.
И это поле распределено равномерно во все стороны от вещества и по мере удаления от вещества это поле ослабевает.
То есть фундаментально у каждого объекта обладающего массой есть своё поле и кроме того все массы вселенной в совокупности формируют единое гравитационное поле вселенной.
Теперь давайте поймем: где кирпич, а где его частное поле. Частное поле привязано к кирпичу.
Если мы разделим кирпич на части и разведем эти части в стороны, то и частное поле кирпича тоже будет разделено и разнесено в стороны.
(ломаем кирпич)
Частное поле кирпича разделено и разнесено в стороны.
Теперь давайте рассмотрим, что общего между частицами связанными в рамках вещества и между несвязанными, свободными частицами.
Пример.
К чему приведет планомерное расщепление кирпича, деление кирпича
Планомерное разрушение так называемых внутренних связей кирпича.
Все без исключения внутренние связи кирпича определяются извне, со стороны базового поля. Совокупное вселенское поле создает в пространстве колоссальное напряжение, которое и определяет все внутренние связи в вещественных объектах.
Чем глубже мы расщепляем кирпич, чем меньше будет фракция, тем больше частиц будут становиться несвязанными веществом, эти частицы отделятся от кирпича и начнут перемещаться со скоростью близкой к скорости света.
Если продолжить расщепление, то все фрагменты расщепятся, высвободятся до уровня несвязанных частиц и под влиянием внешнего поля начнут перемещаться со скоростью близкой к скорости света по всем свободным направлениям.
То есть, если полностью расщепить кирпич, до уровня частиц, то кирпич умчится со скоростью света во всех свободных направлениях.
И если бы внешнего поля вообще бы не было, то кирпич бы сделал то же самое, но с гораздо большей скоростью, со скоростью превышающей скорость света (но это предмет отдельного разговора, а так же вопросы массы и так называемого нейтрино).
Для общего понимания давайте рассмотрим какая ситуация бы имела место для незаполненной веществом вселенной.
Пустая вселенная и один кирпич.
Казалось бы, да как мы это узнаем?
Но самом деле, знаем мы это абсолютно точно, потому что вариантов приложения сил к телу всего два: притяжение и отталкивание.
И так же мы знаем, что на силах прямого притяжения материя существовать не может в принципе, это технически невозможно, потому что неминуемо приводит к лавинообразному процессу обвала в материи в одну точку.
Те кто этого ещё не знает, может посмотреть доказательную часть по ссылке, либо посмотреть фильм «Равновесие в физике».
Продолжим:
Единственный возможный вариант для существования материи в пространстве это взаимное отталкивание, которое при достаточном насыщении вселенной материей приводит к комплексному приталкиванию масс друг к другу.
Тяготение это комплексное приталкивание.
Так что же будет происходить с кирпичом во вселенной не заполненной материей?
(Абсолютно пустая вселенная и один кирпич).
При таком сценарии внутренние связи кирпича обеспечить в принципе не чем. Внешнего поля, внешних сил, внешнего приталкивания нет. Все вещество кирпича без вариантов полностью расщепится и разлетится во всех направлениях, соответственно рассеется и поле кирпича.
Никакое существование никакого вещественного физического тела в таких условиях невозможно.
Во вселенной же заполненной телами, массами картина иная.
Массы «создали» общее поле,
на макроуровне вселенная заполнилась равномерно, ковер галактик.
Это поле обеспечило внутренние связи в каждом кирпиче.
И мы видим, что в реальной вселенной материя не распадается на частицы и не разлетается.
Материя: вещество, частицы, поле.
И если бы не было поля, то не было бы ни каких взаимодействий между частицами, да и самих частиц привычном понимании тоже бы не было.
С вами был Виктор Катющик.
Следите за нашими публикациями.
Подписывайтесь на видеоканал.
Что называется материей в физике
Итак, начнем с того, что все знают. Окружающий нас мир состоит из атомов. Понятные повседневному опыту материальные объекты, видимые даже в микроскоп (правда, электронный). Одно время считалось, что атомы это мельчайшая неделимая частица. Причем, идею выдвинули аж древние греки, но потом с приходом римлян, а следом и христиан, как-то стало не до вопросов о составе материи. И только в 1789 году некий Антуан Лавуазье вернулся к крамольным мыслишкам об атомах.
На картинке фотография атомов кремния, сделанная с помощью сверхвысоковакуумного сканирующего туннельного микроскопа.
Мир был бы прост и замечателен, если бы атом был мельчайшей деталькой всего сущего. Но в 1897 году Томсон все испортил, когда с помощью хитрого опыта открыл электрон, и решил, что атом – это смесь отрицательно и положительно заряженных частиц (как булка с изюмом).
Но предположение Томсона долго не прожило, потому что в 1909 году Эрнесту Резерфорду вздумалось пострелять альфа-частицами по тяжелым атомам (а точнее по кусочку тоненькой золотой фольги).
Внезапно некоторые альфа-частицы не проходили сквозь фольгу, а иногда отскакивали от нее. Резерфорд обнаружил, что в центре атома есть что-то такое крупное, что отбивает альфа-частицы.
Да, для справки, альфа-частицы возникают при радиации и представляют собой два нейтрона и два протона (они же ядро атома гелия). Они являются наиболее безопасным излучением при радиации.
Итак, научному миру открылась ужасающая картина. Атом представляет собой ядро, вокруг которого по некоторым орбитам-траекториям летают электроны.
Давайте осознаем масштабы бедствия. Размер ядра атома таков, что если расстояния в атоме перенести на макрообъекты, то атом, будет, скажем, с земной шар, а ядро атома – ваш домик в деревне. Представьте, сколько пустоты внутри атома и ужаснитесь.
Еще один факт: масса ядра составляет более 99.9% массы атома. То есть электроны почти ничего не весят. В человеке весом около 68 кг масса всех его триллионов электронов составит всего 14 граммов.
Так что, когда художники вот так рисуют атом, то они заблуждаются в размерах более чем полностью.
Но, во-первых, электроны вращались вокруг ядра не из-за гравитационных сил (а вследствие другого вида взаимодействия – электромагнитного). Во-вторых, электроны почему-то не теряли энергию и не падали на ядро. В-третьих, как потом оказалось, электроны вообще и не частицы как таковые (квантовая физика).
В общем, планетарная модель атома провалилась. Но до сих пор, спустя более чем сто лет, находятся отнюдь не домохозяйки, задающие осточертевший все физикам вопрос, а что если атомы это маленькие вселенные?
Поэтому электрон относят к лептонам. Это такой класс неделимых частиц (в него кроме электрона входят еще мюоны и нейтрино, которые не стабильны и живут миллионные доли секунды и фиг знает, зачем они вообще нужны этой Вселенной).
Электрон имеет отрицательный заряд, имеет очень маленькую массу по сравнению с атомом, и количество электронов в атоме определяет химические свойства вещества. И да, он ответственен за существование электрического тока.
Некоторое время считалось, что электроны в атоме летают по разным орбитам, удаленным от ядра на разные расстояния.
И все было бы прекрасно, если бы в начале XX века некоторые особо упорные физики, которым не нравилась пара несущественных проблем, связанных с классической картиной устройства атома, не решили бы докопаться до сущности этих проблем. И они дооткрывались до того, что все стало еще хуже. Собственно, так появилась квантовая физика.
Во-вторых, выяснилось, что электрон даже и не частица, а волна. И вообще он не летает вокруг ядра, а находится в каждой точке орбитали одновременно, если за ним не наблюдать. В теории он скорее похож на облачко вокруг ядра атома с формой этой самой орбитали. И как только начинаешь опытным путем выяснять, где он находится, то он внезапно из волны превращается в частицу, типа, вот он я.
Если опять проводить грубую аналогию со спутником, то представьте, что враги запустили спутник и вы никакими расчетами не можете обнаружить, над какой точкой планеты он сейчас летает. Вернее, вы считаете по классическим формулам, но там спутника почему-то нет. А какой-то сумасшедший гений показывает вам формулы и говорит, что на самом деле спутник находится в каждой точке на орбите. Однако только по этим специальным формулам можно рассчитать места, где спутник окажется с наибольшей вероятностью (большего не просите), и пальнуть туда из пушки. Глупость какая-то, скажете вы. В нашем мире – да, а в квантовом – обычное дело. (о квантовой физике мы пишем в отдельном цикле статей).
Протон имеет положительный заряд и вместе с отрицательным зарядом электрона делает атом электрически нейтральным (если же электронов в атоме меньше, чем положено, то атом приобретает заряд и его все называют ионом).
Нейтрон не имеет заряда и вне ядра атома живет очень не долго, минут десять, примерно, а потом взрывается: разваливается на протон, электрон и электронное нейтрино. При этом ошибочно считать, что нейтрон состоит из этих частей. Он просто на них разваливается. Кстати, по закону сохранения энергии.
Вообще, если хорошенечко разогнать протон и столкнуть его с другим протоном, то столкнувшиеся частицы разобьются на кучу разных частиц, которые живут, как правило, миллионные доли секунды, а то и меньше. Причем виды частиц, на которые развалится протон, зависят от энергии столкновения. А осколки в свою очередь через некоторое время еще на что-нибудь развалятся. Всяких разных частиц на сегодняшний день открыто более 350 штук.
Названия у них одно непонятнее другого, например: мезоны, пионы, каоны, позитроны, мюоны, тау-лептоны, а также античастицы с таким же названием, но приставкой «анти-» и т.д.
Античастицы имеют ту же массу, что и обычные частицы (и тот же спин – не спрашивайте, что это такое), но другие противоположные характеристики, вроде заряда или квантовых чисел).
Собственно, в этих ваших коллайдерах занимаются краш-тестами частиц. Разгоняют те же протоны (их удобнее всего гонять, благодаря большой массе) и сталкивают, а потом смотрят следы, которые оставили осколки. По этим следам (длина пути, траектория следа и т.п.) вычисляют массу открытой частицы, ее заряд и прочие данные.
Фото сделано где-то в недрах коллайдера.
Как мы уже сказали, тот факт, что протоны и нейтроны разваливаются на кусочки еще на значит, что они из них состоят.
Долго время считалось, что протоны и нейтроны это цельные частицы. Но в 70-х годах ученые повторили опыт, чем-то похожий на опыт Резерфорда, но вместо атома мишенью были протоны, а вместо альфа-частиц пулями служили электроны.
И выяснилось, что рассеивание электронов на протонах и нейтронах немного не такое, как ожидалось. Это и еще ряд трудно объяснимых явлений дало повод ученым заявить, что ядерные частицы состоят из чего-то еще.
Этому «чему-то еще» дали название «кварки». Поясню еще раз: никто этих кварков пока еще не видел и не регистрировал, но косвенные эксперименты, а самое главное, расчеты, показывают, что протоны и нейтроны состоят из кварков Причем каждая частица состоит сразу из трех кварков, которые взаимосвязаны между собой и соответственно существуют только группами. Одиночный кварк, в принципе, не может существовать вне частицы. Из кварков состоят и другие частицы материи (кроме лептонов). Всего ученые открыли (или, можно сказать, навычисляли) 6 видов кварков, соотнесенные к трем поколениям. Хитроумных названий этим кваркам придумать не смогли, поэтому кто-то прикололся и назвал кварки вот так:
Так получается, что все составные частицы в нашем мире это комбинации кварков. Можно спросить, но почему ученые, не видя этих кварков, считают их реальными фундаментальными частицами?
Во-первых, если предположить, что кварки существуют, то все многообразие частиц хорошо классифицируется и укладывается в так называемую Стандартную модель, которая много чего объясняет. А это научненько!
Во-вторых, на основе комбинаций кварков можно предсказать, какие частицы еще не открыты. И действительно, ожидаемые частицы рано или поздно находятся, причем с предсказанными параметрами.
В-третьих, экспериментально удавалось «вырвать» кварк из протона, но получался не сам кварк, а некий очень интересный эффект, предсказанный теорией и названный струей.
Причин считать кварки реальными гораздо больше, но они сложноваты для нашего праздного объяснения, и мы их оставим читателям для самостоятельного изучения. Ну, и самый главный аргумент, которым всегда руководствуется наука: на сегодняшний день более удачно объяснить строение материи нечем.
На картинке схемы частиц, сложенных из кварков.
Ну и наконец, предел физики материи.
Стандартная модель все равно имеет множество темных мест, которые не объяснишь тем, что кварки и лептоны это окончательная форма материи, меньше которой ничего нет.
Поэтому физики с наиболее развитой фантазией пытаются предугадать еще более мелкие частички материи. Именно что предугадать и математически рассчитать их поведение.
На сегодняшний день есть несколько более менее перспективных теорий, которые делят материю дальше.
Доказать наличие струн на сегодняшний день невозможно, да и теоретические расчеты настолько сложны (все-таки девятимерные пространства, включая время), что столько математики осилит не каждый мегамозг. В теории суперструн количество измерений доведено до 11, а в М-теории предполагается, что колеблется не струна, а двухмерная пленочка (брана, как ее называют физики-теоретики).
На этом краткий экскурс в материю у нас заканчивается. Можете бить за неточность изложения и обещать открыть глаза на правильную физику. Мы с интересом будем следить за дискуссией, если таковая случится.
Вы, наверное, заметили, что тема названа «Часть 1». Дело в том, что разглядывая материю, мы рассмотрели только ту ее часть, которая, скажем так, вещественна. А есть еще одна форма материи, которую пощупать нельзя. Это то, что мы называем полем или энергией (да-да, те самые фотоны, гравитоны и бозоны Хиггса). Об этом мы попробуем рассказать во второй части, которая уже готова.
Спасибо за внимание. Написано по заказу ЗОГа, атеистического лобби и прочих завидующих духовным скрепам в этой стране.