Что называется коэффициентом пульсации выпрямленного напряжения
Коэффициент пульсации
Определение и формула коэффициента пульсации
О коэффициенте пульсации чаще всего говорят, когда рассматривают переменный электрический ток. Тогда рассматривают коэффициент пульсации напряжения или силы тока. Существует внутренне деление коэффициентов пульсации напряжения (тока) на: коэффициент пульсации напряжения (тока), коэффициент пульсации напряжения (тока) по среднему значению, по действующему значению.
В общем случае форма напряжения на выходе выпрямляющего устройства имеет постоянную (называемую полезной) и переменную (пульсирующую) составляющие.
Если представить выпрямленное напряжение в виде ряда Фурье, как сумму постоянной составляющей () и некоторого числа () гармоник, имеющих амплитуды , то коэффициент пульсации напряжения () можно определить формулой:
где n — номер гармоники.
При этом компоненту считают полезным результатом деятельности выпрямителя, в отличие от пульсаций . Если форма пульсаций сложная, то максимальным значением может обладать не первая гармоника, но обычно под k понимают ее. Она применяется в расчетах и записывается в технических документах оборудования.
Разновидности коэффициентов пульсации напряжения (тока)
Коэффициентом пульсации напряжения (тока) по среднему значению называют величину, равную отношению средней величины переменной компоненты пульсирующего напряжения (тока) к постоянной составляющей.
Коэффициент пульсации напряжения (тока) по действующему значению — это параметр, который находят как отношение действующего значения переменой компоненты пульсирующего напряжения (тока) к его неизменной компоненте.
Часто потребителям не важно, какая из гармоник на выходе выпрямляющего устройства обладает наибольшим размахом. Интерес составляет общий размах пульсаций, который характеризует абсолютный коэффициент пульсаций (), который определяют выражением:
Или применяют формулу:
Коэффициент пульсации напряжения измеряют при помощи осциллографа или двух вольтметров.
Коэффициент пульсации — это одна из самых значимых характеристик выпрямителя — устройства, которое предназначено для превращения переменного напряжения источника электрической энергии в постоянное.
Единицы измерения
Коэффициент пульсации рассматривают как безразмерную величину или он может указываться в процентах.
Примеры решения задач
Задание | Каковы коэффициенты пульсации по первой гармонике, абсолютные коэффициенты пульсации в двух вариантах расчета, если постоянное напряжение на выходе выпрямляющего устройства составляет 20 В, а напряжение пульсаций ? |
Решение | Коэффициент пульсации напряжения по первой гармонике найдем, используя выражение: |
где n =1. Проведем вычисления:
Абсолютный коэффициент пульсации напряжения (вариант 1) найдем, применяя формулу:
Вычислим :
Второй вариант абсолютного коэффициента пульсации напряжения:
Задание | При подаче переменного напряжения в виде синусоиды на первичную обмотку согласующего (рис.1) на зажимах вторичной обмотки он будет иметь напряжение: Диод проводит электрический ток только половину периода переменного напряжения. В положительную половину периода, когда на аноде диода (VD) потенциал больше нуля, он открыт и при этом все напряжение вторичной обмотки трансформатора приложено к диоду. Каким будет коэффициент пульсации тока по среднему значению? |
Полученный в результате выпрямления в одной половине периода ток разложим в ряд Фурье:
Среднее значение силы тока, которое содержится в пульсирующем токе равно:
Тогда среднее значение напряжения после выпрямления найдем как:
Коэффициент пульсации тока по средней величине будет равен:
Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.
Что называется коэффициентом пульсации выпрямленного напряжения
Введение
Мерой пульсации является уровень пульсации, который может быть выражен в абсолютных величинах (амплитуда пульсации, размах, действующее значение и т.д.). Но иногда бывает удобно рассматривать уровень пульсации не в абсолютном выражении, а в относительных единицах. Отношение величины, характеризующей уровень пульсаций к постоянной составляющей сигнала, называют коэффициентом пульсации.
Коэффициент пульсации можно использовать, например, как объективную характеристику качества выходного напряжения источника питания, которая позволяет сравнивать между собой разные устройства, без привязки к абсолютным значениям выходных напряжений. Коэффициент пульсации позволяет судить о применимости данного источника для питания той или иной нагрузки, ведь для обеспечения работоспособности потребителя, пульсация не должна превышать заданных для него допустимых пределов.
Определение коэффициента пульсации
Некоторые сложности с использованием данного параметра возникают в связи с тем, что можно вводить в рассмотрение множество разных коэффициентов пульсации, в зависимости от того, какую величину выберем в качестве абсолютной меры уровня пульсаций. Поэтому важно уточнять, о каком именно коэффициенте идёт речь. Чем некоторые авторы порой пренебрегают и тогда остаётся только догадываться, что имелось в виду.
Можно выделить три основных подхода к определению коэффициента пульсации, которые чаще всего используются в литературе и отражены в нормативной документации (стандартах).
Рис. %img:rpl_def
Существует аналогичное определение, но в нём используется не половина размаха, а полный размах пульсаций.
Но можно использовать не только амплитудные значения величины пульсаций, а, например, действующее (среднеквадратичное) значение напряжения пульсации. Тогда получим следующее определение.
Каждое из рассмотренных определений имеет свою область применения. Выбор определяется тем, какой из коэффициентов наилучшим образом отображает реальные характеристики пульсации в данном случае.
Коэффициенты, вычисляемые по амплитуде и размаху пульсации (первое и второе определения) в целом равноценны, лишь отличаются друг от друга в 2 раза. Они характеризуют наибольшее отклонение величины от среднего значения. Хорошо подходят, например, для оценки качества выходного напряжения источников питания. Как правило, питаемое устройство предъявляет вполне определённые требования к пиковым отклонениям питающего напряжения, что позволяет на основании амплитудного коэффициента пульсации сделать вывод о применимости источника по пульсациям.
В некоторых же случаях больший интерес представляет не амплитуда, а действующее значение пульсации, которое определяет мощность пульсации на резистивной нагрузке. И тогда отдают предпочтение третьему определению.
Действующее значение величины, а значит и вычисленный по ней коэффициент пульсации оказывается малочувствителен к единичным кратковременным выбросам величины («иголкам» сигнала), которым соответствует малая переносимая в нагрузку энергия и которые вносят малый вклад в среднюю мощность, рассеиваемую на нагрузке.
Иногда эта особенность коэффициента пульсации по действующему значению оказывается полезной.
Определения понятия в соответствии с нормативной документацией
Посмотрим, например, что по данному вопросу можно найти в стандартах достаточно авторитетной организации IEC (Международной электротехнической комиссии). Осуществляя деятельность по разработке стандартов, IEC также проделала огромную работу с целью унификации терминологии в области электротехники, результатом чего стало создание Международного электротехнического словаря (Electropedia), доступного on-line.
Воспользовавшись поиском по словарю, обнаруживаем, что термины «пульсация», «коэффициент пульсации» используются в разных предметных областях: математика; электромагнитная совместимость; силовая электроника и др. Это ещё одна из причин многозначности термина.
Если, например, обратиться к разделу электромагнитной совместимости, то обнаружим, что там рассматриваются два вида коэффициентов пульсации:
В разделе «Силовая электроника» обнаруживаем термин «DC ripple factor» (коэффициент пульсации постоянного тока), который определяется как отношение половины разницы между максимальным и минимальным значениями пульсирующего тока к среднему значению этого тока (ratio of half the difference between the maximum and minimum value of a pulsating direct current to the mean value of this current), смотрите IEC-60050-551. Это определение похоже на рассмотренное ранее определение для peak-ripple factor (коэффициент пульсации по амплитудному значению), но здесь для расчёта берётся не полный размах пульсации, а половина.
Наверно есть основания для введения двух однотипных определений, но избавиться от путаницы это совсем не помогает.
Найти упоминание о коэффициенте пульсации можно и в ГОСТ. Так, во многих статьях, касающихся темы пульсации, даётся ссылка на «ГОСТ 23875-88 Качество электрической энергии. Термины и определения», в котором приводится сразу несколько вариантов определения:
* Тем не менее, например, в действующем «ГОСТ 23414-84 Преобразователи электроэнергии полупроводниковые. Термины и определения (с Изменением N 1)» имеется ссылка на утративший силу ГОСТ 23875-88. Оказывается так можно.
Рис. %img:h
Данное определение в некоторой степени аналогично рассмотренному выше определению «DC ripple factor» (коэффициент пульсации постоянного тока) из IEC-60050-551.
Правда, данный стандарт является национальным (на что намекает символ Р в обозначении), но тем не менее.
Альтернативные определения
Справедливости ради нужно отметить, что рассмотренные выше определения коэффициента пульсации не являются единственно возможными и в литературе можно встретить другие варианты.
В принципе, под коэффициентом пульсации можно понимать отношение любой меры уровня пульсаций к среднему значению величины. Поэтому, в случае необходимости, можно вводить в рассмотрение самые экзотические варианты определения. Например, за уровень пульсаций можем принять сумму гармоник переменной составляющей с удобными нам весовыми коэффициентами.
Но если, например, имеем дело с питанием устройства, для которого нормируются вполне определённые компоненты в спектре пульсации, то описанный вариант определения вполне годится.
Показатели вторичных источников электропитания
При расчётах источников электропитания любое радиоустройство или станцию связи представляют активным эквивалентом с сопротивлением
Реальная нагрузка обычно нелинейна, поэтому часто используют дифференциальное сопротивление нагрузки:
Обычно Rн ≠ RНД, поэтому расчёты вторичных источников электропитания справедливы только для номинального режима и это является источником погрешности в расчётах показателей выпрямительных устройств.
Коэффициент полезного действия
Основной характеристикой любого энергетического устройства является его КПД, который равен отношению активных мощностей на выходе (Рвых) и на входе (Р — мощность, потребляемая от первичной сети):
Если первичная сеть постоянного тока, то потребляемую мощность определяют P = UВХ×IВХ. Если первичная сеть переменного тока, то мощность, потребляемая от сети при гармоническом токе равна:
Справедлив треугольник мощностей (рисунок 1):
Рисунок 1 — Треугольник мощностей
Если ток потребления несинусоидальный, то активная мощность потребляется только на той частоте, которая совпадает с частотой напряжения сети. Здесь в полной мощности появляется ещё одно слагаемое — мощность искажений (Т)
но активная мощность потребляется только по первой гармонике P=U×I1×cos φ1, где I1 — действующее значение первой гармоники тока и угол сдвига этой гармоники — φ1.
Коэффициент мощности
Полная мощность (S) характеризует предельные возможности источника энергии. Под коэффициентом мощности понимается отношение
При синусоидальной форме переменного тока полная мощность равна потребляемой мощности S = P только при резистивной нагрузке. Реальные потребители электроэнергии всегда имеют реактивную составляющую сопротивления и часто обладают нелинейным характером, поэтому коэффициент мощности χ≤1. В энергетике принимают специальные меры для его повышения. Международная электротехническая комиссия (МЭК) ещё в 1992г ввела в действие стандарт IEС–555–2, согласно которому любое устройство, потребляющее от сети мощность более 300 ватт, должно иметь коэффициент мощности равный единице. Это возможно только при наличии на входе активного корректора коэффициента мощности (ККМ). В 2001 принят новый стандарт IEC–1000–3–2, в котором уровень мощности снижен до 200 ватт, поскольку растёт число потребителей именно малой мощности. Поэтому любая электротехническая продукция, выходящая на международный рынок и подключаемая к сети переменного тока, должна иметь активный характер входного сопротивления.
Коэффициент пульсаций
Форма выходного напряжения ВУ в общем случае содержит постоянную (полезную) составляющую и переменную составляющую (пульсации). Она приведена на рисунке 2. Под коэффициентом пульсаций понимается отношение амплитуды первой гармоники пульсаций к постоянной составляющей U0, хотя его можно определить по любой гармонике, которая может оказаться больше первой.
Рисунок 2 — Выходное напряжение выпрямителя
Представив выпрямленное напряжение рядом Фурье — суммой постоянной составляющей U0 и n гармоник с амплитудами Umn, находят коэффициент пульсаций напряжения:
Постоянная составляющая U0 — является полезным продуктом выпрямителя, а пульсации Umn — вредной составляющей. При сложной форме пульсаций наибольшую величину может иметь не первая гармоника, а гармоника с более высоким номером, хотя обычно под kП понимается именно первая гармоника, которая используется во всех расчётах и приводится в технической документации на оборудование.
В современных выпрямителях, использующих импульсные методы преобразования, форма пульсаций существенно отличается от синусоидальной формы (см. рисунок 2б). Потребителя обычно не интересует, какая из гармоник на выходе выпрямителя имеет максимальный размах. Его интересует общий размах пульсаций или так называемый абсолютный коэффициент пульсаций (kабс), который может рассчитываться по разным формулам, например:
Например, если постоянное напряжение U0 = 10 В, а напряжение пульсаций Um1 = 1В, то:
Видно, что абсолютный коэффициент пульсаций вдвое больше по величине и объективно отражает пульсации на нагрузке, хотя во всех нормативных документах указываются именно пульсации по первой гармонике. Поэтому к коэффициенту пульсаций надо относиться очень внимательно.
Для оценки помех, проникающих в телефонные каналы связи по цепям питания необходимо учитывать не только амплитуду, но и частоту помехи. Это связано с неравномерной чувствительностью человеческого уха в звуковом диапазоне. Поэтому вводится понятие псофометрического коэффициента aк, зависимость которого от частоты приведена на рисунке 3.
Рисунок 3 – Псофометрический коэффициент
На частоте f = 800 Гц aк = 1. Относительное влияние гармоник с другими частотами характеризуется величиной псофометрического коэффициента. Эффективное значение псофометрического напряжения пульсаций Uпсф на выходе выпрямителя определяется выражением:
Внешняя характеристика
Внешняя характеристика вторичного источника питания — это зависимость напряжения на нагрузке от тока нагрузки: U0 = f(I0). Вторичный источник питания обычно представляется генератором постоянного напряжения U0xx (холостого хода) с внутренним сопротивлением Rвых. Эта схема приведена на рисунке 4.
Рисунок 4 – Эквивалентная схема вторичного источника питания
Рисунок 5 – Типовая внешняя характеристика источника питания
Падение напряжения определяется выходным сопротивлением источника питания, поэтому по внешней характеристике можно определить его выходное сопротивление:
, (13)
это сопротивление обычно нелинейное, поэтому его находят при заданном рабочем токе. У стабилизированного источника питания выходное сопротивление может быть достаточно мало, и тогда внешняя характеристика принимает вид, показанный на рисунке 6.
Рисунок 6 – Внешняя характеристика стабилизированного источника питания
Выходное сопротивление источника питания существенно влияет на работу РЭА. Если от одного источника питается несколько блоков (широко распространенная практика), то зависимость выходного напряжения от тока источника при Rвых≠0 приводит к электрической связи между несколькими нагрузками. Эта ситуация иллюстрируется эквивалентной схемой, приведенной на рисунке 7.
Рисунок 7 — Эквивалентная схема взаимодействия блоков через выходное сопротивление источника питания
Изменение тока одной из нагрузок I01 или I02 приводит к изменению U0 и Rвых источника питания играет роль сопротивления, на котором возникает паразитная обратная связь по току. Для ее устранения на выходе источника питания следует применить конденсатор C большой ёмкости. Его значение можно рассчитать исходя из условия:
, (14)
где ωн — частота изменения тока нагрузки.
При импульсных токах нагрузки это условие надо выполнить для широкого спектра частот, но идеальных конденсаторов не существует. Реальный конденсатор можно представить эквивалентной схемой замещения, показанной на рисунке 8.
Рисунок 8 — Эквивалентная схема реального конденсатора (а) и зависимость его полного сопротивления от частоты (б)
То есть, реальное сопротивление конденсатора на частоте 10 кГц на порядок превышает теоретическое значение сопротивления Хс. Поэтому в схемах устройств, чувствительных к помехам параллельно электролитическому конденсатору ставят плёночный или керамический конденсатор малой ёмкости, который обладает большей полосой рабочих частот.
Масса и объём
Энергетические устройства одинакового назначения сравнивают между собой по удельным массо-объёмным показателям с размерностью: Вт/дм³ и Вт/кг (иногда кг/Вт). Габариты любого электротехнического устройства определяются либо требуемой поверхностью теплопровода (VT), либо конструктивным объёмом, необходимым для размещения деталей Vк. Применение интегральной и гибридно-плёночной технологии изготовления диодов, транзисторов, резисторов, дросселей и других деталей, повышает их коэффициент загрузки, т.е. увеличивается плотность тока j (А/мм²) и частота преобразования, что приводит к уменьшению массы и объёма конструкции Vк. С другой стороны повышение коэффициента загрузки приводит к увеличению потерь, следовательно, возрастает и требуемый «тепловой» объём (Vт). Это положение иллюстрируется графиком, приведенным на рис.7, где по оси абсцисс отложен интегральный параметр — частота f, плотность тока j, индукция В.
Рисунок 9 — Зависимость объёма вторичного источника питания от частоты, плотности тока и индукции
Можно предположить, что увеличивая частоту, можно снизить объём конструкции, однако при этом возрастает минимальный тепловой объём (мощный транзистор ставится на радиатор!). Поэтому нет смысла уходить за точку оптимума. Попадание в эту точку на этапе проектирования системы может быть только случайным, поскольку задача многопараметрическая. Любое отклонение от неё в ту или другую сторону является основанием для оптимизации режимов работы с целью повышения удельной мощности и КПД вторичного источника.
Понравился материал? Поделись с друзьями!
Вместе со статьей «Вторичные источники питания» читают: