Что называется химико термической обработкой

Химико-термическая обработка металлов

В подавляющем большинстве случаев химико-термическую обработку проводят с целью обогащения поверхностных слоев изделий определенными элементами. Их называют, насыщающими элементами или компонентами насыщения.

В результате ХТО формируется диффузионный слой, т.е. изменяется химический состав, фазовый состав, структура и свойства поверхностных слоев. Изменение химического состава обуславливает изменения структуры и свойств диффузионного слоя.

Содержание

Классификация процессов химико-термической обработки

В зависимости от насыщающего элемента различают следующие процессы химико-термической обработки:

Широкое промышленное применение получили только традиционные процессы насыщения: азотирование, цементация, нитроцементация, цианирование. Цинкование, алитирование, борирование, хромирование, силицирование применяют значительно в меньшей мере.

При реализации любого процесса ХТО изделия выдерживают определенное время при температуре насыщения в окружении насыщающей среды. Насыщающие среды могут быть твердыми, жидкими или газообразными.

Существующие методы химико-термической обработки можно разделить на три основные группы: насыщение из твердой фазы (в основном, из порошковых засыпок), насыщение из жидкой фазы и насыщение из газовой (или паровой) фазы. Особо выделяют метод ХТО в ионизированных газах (ХТО в плазме тлеющего разряда). Насыщение из паст (обмазок) занимает особое положение (в зависимости от состава, консистенции обмазки и температурно-временных условий химико-термической обработки тяготеет к одному из указанных выше методов насыщения)

В настоящее время активно изучают способы ХТО, реализующиеся при воздействии на поверхность концентрированными потоками энергии.

Массоперенос при химико-термической обработке

При любом процессе ХТО в реакционной системе протекают определенные процессы и реакции. Условно весь процесс массопереноса (насыщения) при ХТО может быть представлен в виде пяти последовательно реализующихся стадий:

Но даже эта, довольно общая схема процесса диффузионного насыщения не описывает в полной мере всей сложности явлений, имеющих место при ХТО.

Важнейшим условием образования диффузионного слоя (необходимым, но не достаточным) является существование растворимости диффундирующего элемента в насыщаемом металле при температуре химико-термической обработки. Диффузионные слои могут также образовывать элементы, имеющие при температуре процесса малую растворимость в насыщаемом металле, но образующие с ним химические соединения.

Толщина диффузионного слоя, а следовательно и толщина упрочненного слоя поверхности изделия, является наиболее важной характеристикой химико-термической обработки. Толщина слоя определяется рядом таких факторов, как температура насыщения, продолжительность процесса насыщения, состав стали, то есть содержание в ней тех или иных легирующих элементов, градиент концентраций насыщаемого элемента между поверхностью изделия и в глубине насыщаемого слоя.

Применение

ХТО применяют с целью:

Требуемые свойства диффузионных (поверхностных) слоев могут формироваться как в процессе химико-термической обработки (азотирование, хромирование, борирование и др.), так и при последующей термообработке (цементация, нитроцементация).

Источник

Химико-термическая обработка стали

Существуют различные способы воздействия на сталь с целью придания ей требуемых свойств. Один из комбинированных методов — химико-термическая обработка стали.

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Общие принципы

Суть данной технологии состоит в преобразовании внешнего слоя материала насыщением. Химико-термическая обработка металлов и сплавов осуществляется путем выдерживания при нагреве обрабатываемых материалов в средах конкретного состава различного фазового состояния. То есть, это совмещение пластической деформации и температурного воздействия.

Это ведет к изменению параметров стали, в чем состоит цель химико-термической обработки. Таким образом, назначение данной технологии — улучшение твердости, износостойкости, коррозионной устойчивости. В сравнении с прочими технологиями химико-термическая обработка выгодно отличается тем, что при значительном росте прочности пластичность снижается не так сильно.
Основные ее параметры — температура и длительность выдержки.

Рассматриваемый процесс включает три этапа:

Интенсивность диффузии увеличивается в случае формирования растворов внедрения и снижается, если вместо них формируются растворы замещения.

Количество насыщающего элемента определяется притоком его атомов и скоростью диффузии.

На размер диффузионного слоя влияют температура и длительность выдержки. Данные параметры связаны прямой зависимостью. То есть с ростом концентрации насыщающего элемента возрастает толщина слоя, а повышение интенсивности теплового воздействия приводит к ускорению диффузии, следовательно, за тот же промежуток времени она распространится на большую глубину.

Большое значение для протекания процесса диффузии имеет растворимость в материале обрабатываемой детали насыщающего элемента. В данном случае играют роль пограничные слои. Это объясняется тем, что ввиду наличия у границ зерен множества кристаллических дефектов диффузия происходит более интенсивно. Особенно это проявляется в случае малой растворимости насыщающего элемента в материале. При хорошей растворимости это менее заметно. Кроме того, диффузия ускоряется при фазовых превращениях.

Классификация

Химико-термическая обработка стали подразделяется на основе фазового состояния среды насыщения на жидкую, твердую, газовую.

В первом случае диффузия происходит на фрагментах контакта поверхности предмета со средой. Ввиду низкой эффективности данный способ мало распространен. Твердую фазу обычно используют с целью создания жидких или газовых сред.

Химико-термическая операция в жидкости предполагает помещение предмета в расплав соли либо металла.

При газовом методе элемент насыщения формируют реакции диссоциации, диспропорционирования, обмена, восстановления. Наиболее часто в промышленности для создания газовой и активной газовой сред используют нагрев твердых. Удобнее всего проводить работы в чисто газовой среде ввиду быстрого прогрева, легкого регулирования состава, отсутствия необходимости повторного нагрева, возможности автоматизации и механизации.

Как видно, классификация по фазе среды не всегда отражает сущность процесса, поэтому была создана классификация на основе фазы источника насыщения. В соответствии с ней химико-термическая обработка стали подразделена на насыщение из твердой, паровой, жидкой, газовой сред.

Кроме того, химико-термическая технология подразделена по типу изменения состава стали на насыщение неметаллами, металлами, удаление элементов.

По температурному режиму ее классифицируют на высоко- и низкотемпературную. Во втором случае производят нагрев до аустенитного состояния, а в первом — выше и оканчивают отпуском.

Наконец, химико-термическая обработка деталей включает следующие методы, выделяемые на основе технологии выполнения: цементацию, азотирование, металлизацию, нитроцементацию.

Диффузионная металлизация

Это поверхностное насыщение стали металлами.

Возможно проведение в жидкой, твердой, газовой средах. Твердый метод предполагает использование порошков из ферросплавов. Жидкой средой служит расплав металла (алюминий, цинк и т. д.). Газовый метод предполагает использование хлористых металлических соединений.

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Металлизация дает тонкий слой. Это объясняется малой интенсивностью диффузии металлов в сравнении с азотом и углеродом, так как вместо растворов внедрения они формируют растворы замещения.

Такая химико-термическая операция производится при 900 — 1200°С. Это дорогостоящий и длительный процесс.

Основное положительное качество — жаростойкость продуктов. Ввиду этого металлизацию применяют для производства предметов для эксплуатационных температур 1000 — 1200°С из углеродистых сталей.

По насыщающим элементам металлизацию подразделяют на алитирование (алюминием), хромирование, борирование, сицилирование (кремнием).

Первая химико-термическая технология придает материалу стойкость к окалине коррозии, однако на поверхности после нее остается алюминий. Алитирование возможно в порошковых смесях либо в расплаве при меньшей температуре. Второй способ быстрее, дешевле и проще.

Хромирование тоже увеличивает стойкость к коррозии и окалине, а также к воздействию кислот и т. д. У высоко- и среднеуглеродистых сталей оно также улучшает износостойкость и твердость. Данная химико-термическая операция в основном производится в порошковых смесях, иногда в вакууме.

Основное назначение борирования состоит в улучшении стойкости к абразивному износу. Распространена электролизная технология с применением расплавов боросодержащих солей. Существует и безэлектролизный метод, предполагающий использование хлористых солей с ферробором или карбидом бора.

Сицилирование увеличивает стойкость к коррозии в соленой воде и кислотах, к износу и окалине некоторых металлов.

Науглероживание (цементация)

Это насыщение поверхности стальных предметов углеродом. Данная операция улучшает твердость, износостойкость, а также выносливость поверхности материала. Нижележащие слои остаются вязкими.

Данная химико-термическая технология подходит для предметов из низкоуглеродистых сталей (0,25%), подверженных контактному износу и переменным нагрузкам.

Предварительно необходима механическая обработка. Не цементируемые участки покрывают слоем меди либо обмазками.

Температурный режим определяется содержанием углерода в стали. Чем оно ниже, тем больше температура. Для адсорбирования углерода и диффузии в любом случае она должна составлять 900 — 950°С и выше.

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Таким образом, путем насыщения поверхности стальных деталей углеродом достигают концентрации данного элемента в верхнем слое 0,8 — 1%. Большие значения ведут к повышению хрупкости.

Цементацию осуществляют в среде, называемой карбюризатором. На основе ее фазы технологию подразделяют на газовую, вакуумную, пастами, в твердой среде, ионную.

При первом способе применяют каменноугольный полукокс, древесный уголь, торфяной кокс. С целью ускорения используют активизаторы и повышают температуру. По завершении материал нормализуют. Ввиду длительности и малой производительности данная химико-термическая технология используется в мелкосерийном выпуске.

Вторая технология предполагает использование суспензий, обмазок либо шликеров.

Более совершенный способ — вакуумная цементация. Это двухступенчатый процесс при пониженном давлении. От прочих методов отличается скоростью, равномерностью и светлой поверхностью слоя, отсутствием внутреннего окисления, лучшими условиями производства, мобильностью оборудования.

Ионный метод подразумевает катодное распыление.

Цементация — промежуточная химико-термическая операция. Далее осуществляют закалку и отпуск, определяющие свойства материала, такие как износостойкость, выносливость при контакте и изгибе, твердость. Главный недостаток — длительность.

Азотирование

Данным термином называют насыщение материала азотом. Этот процесс производят в аммиаке при 480 — 650°С.

С легирующими данный элемент формирует нитриды, характеризующиеся дисперсностью, температурной устойчивостью и твердостью.

Такая технология химико-термической обработки увеличивает твердость, стойкость к коррозии и износу.

Необходима предварительная механическая и термическая обработка для придания окончательных размеров. Не азотируемые фрагменты покрывают оловом либо жидким стеклом.

Обычно используют температурный интервал от 500 до 520°С. Это дает за 24 — 90 ч. 0,5 мм слой. Толщина определяется длительностью, составом материала, температурой.

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Азотирование приводит к увеличению обрабатываемых деталей вследствие возрастания объема верхнего слоя. Величина роста напрямую определяется его толщиной и температурным режимом.

При жидком способе применяют цианосодержащие, реже бесцианитные и нейтральные соли. Ионная химико-термическая операция отличается повышенной скоростью.

Азотирование подразделяют по целевым свойствам: им достигается или улучшение устойчивости к коррозии, либо повышение стойкости к износу и твердости.

Цианирование, нитроцементация

Это технология насыщения стали азотом и углеродом. Таким способом обрабатывают стали с количеством углерода 0,3 — 0,4%.

Соотношение между углеродом и азотом определяется температурным режимом. С его ростом возрастает доля углерода. В случае пересыщения обоими элементами слой обретает хрупкость.

На размер слоя влияет длительность выдержки и температура.

Цианирование проводится в жидкой и газовой средах. Первый способ называют также нитроцементацией. Кроме того, по температурному режиму оба типа подразделяют на высоко- и низкотемпературные.

При жидком способе используют соли с цианистым натрием. Основной недостаток — их токсичность. Высокотемпературный вариант отличается от цементации быстротой, большими износостойкостью и твердостью, меньшей деформацией материала. Нитроцементация дешевле и безопаснее.

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Предварительно производят окончательную механическую обработку, а не подлежащие цианированию фрагменты покрывают слоем меди в 18 — 25 мкм толщиной.

Сульфидирование, сульфоцианирование

Это новая химико-термическая технология, направленная на улучшение износостойкости.

Первый метод состоит в насыщении материала серой и азотом путем нагрева в серноазотистых слоях.

Сульфоцианирование подразумевает насыщение углеродом, помимо названных элементов.

Источник

Химико-термическая обработка металлов и сплавов

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Химико — термическая обработка металлов и сплавов

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

процесс изменения химического состава, структуры и свойств поверхности деталей за счет насыщения ее различными химическими элементами

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Физические процессы ХТО

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Основными параметрами химико-термической обработки

В результате ХТО формируется диффузионный поверхностный слой, с определенным химическим и фазовым составом, структурой и свойствами.

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

ХТО применяют с целью

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

для цементации на глубину 0,1 мм затрачивается 1 час

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкой

Термическая обработка после цементации

Цементация стали применяется

Схема установки для азотирования

шахтные, ретортные и камерные печи

Азотирование проводят на готовых изделиях, прошедших окончательную механическую и термическую обработку (закалка с высоким отпуском).

Металлы и сплавы, подвергаемые азотированию

После цианирования проводят закаливание и низкий отпуск

Методы и способы борирования

Увеличение срока службы борированных деталей машин и инструмента

Методы и способы силицирование

вакуумная электропечь для силицирования

Силицированию подвергают детали, используемые

Применение сульфидирования и сульфоцианирования

Гидроабразивное фосфатирование один из лучших способов защиты металла от коррозии

Диффузионную металлизацию можно проводить в:

– процесс дорогостоящий, осуществляется при высоких температурах ( 1000…1200 o С ) в течение длительного времени

Применение алитирования (алюминирования)

Методы и способы титанирования

Применение оцинкованных изделий

Электрохимическое и химико термическое воздействие на металлы и сплавы с целью их обработки

Металлообработка – это комплекс технологических процессов изменения размеров, формы и качественных характеристик металлов и сплавов. К ним относятся токарная обработка металла, термическая и химико термическая, электрофизическая, электрохимическая и многие другие виды металлообработки.

Термический метод

Термообработка изделий заключается в изменении структуры материала под воздействием:

В зависимости от режимов проведения работ металла конечным результатом операции может быть:

Что называется химико термической обработкой. Смотреть фото Что называется химико термической обработкой. Смотреть картинку Что называется химико термической обработкой. Картинка про Что называется химико термической обработкой. Фото Что называется химико термической обработкойИзменение структуры путем теплового воздействия

Виды термической обработки металлов и сплавов:

Процесс данного метода работ непрост. Наука материаловедение и термическая обработка металлов изучает глубинные загадочные процессы, происходящие внутри металла.

Химико термический метод

Химико термическая методика предназначена для изменения состава стали в определенном слое. К этой группе методов относятся:

Электроэрозионный метод

В процессе электроэрозионной обработки металла импульсом электрического тока с поверхности детали вырываются частицы металла. Импульсы на столько короткие, что за это время успевает расплавиться и испариться лишь небольшое количество вещества. При этом тепло не распространяется вглубь детали.

К электроэрозионному методу относятся:

Электроискровой метод основан на применении искрового разряда. В канале разряда температура достигает 100000С, но время действия импульса мало. В результате можно получить хорошую поверхность.

Но метод этот не отличается высокой производительностью, а износ инструмента равняется объему снятого вещества.

Метод применяется для особо точной (прецизионной) подгонки мелких деталей, вырезки деталей твердосплавных штампов по контуру, прошивки маленьких отверстий.

Электроимпульсная обработка основана на применении импульсов дугового разряда. Температура в рабочей зоне достигает 4000 – 50000С, что дает возможность пользоваться большими мощностями (несколько десятков киловатт). В результате повышается производительность обработки материала.

Электрохимическая обработка

Этот способ основан на законах электрохимии. Существуют следующие электрохимические методы обработки металлов:

Анодно-гидравлическая обработка основана на следующем свойстве металлов: скорость анодного растворения находится в прямой зависимости от расстояния между электродами.

При сближении электродов поверхность анода(заготовки) полностью повторяет контуры инструмента (катода). Но в результате процесса между катодом и анодом скапливаются побочные продукты, которые приходится оттуда удалять.

Это можно сделать прокачкой электролита. А можно применить комбинированный способ – анодно-механический.

Анодно-механическая обработка является комбинацией анодного растворения и эрозии внешнего слоя заготовки: к катоду присоединяется вращающийся диск, который механически удаляет окисную пленку с выступающих частей обрабатываемой поверхности.

Химико-термическая обработка металлов — это… Что такое Химико-термическая обработка металлов?

Химико-термическая обработка (ХТО) — нагрев и выдержка металлических (а в ряде случаев и неметаллических) материалов при высоких температурах в химически активных средах (твердых, жидких, газообразных).

В подавляющем большинстве случаев химико-термическую обработку проводят с целью обогащения поверхностных слоев изделий определенными элементами. Их называют, насыщающими элементами или компонентами насыщения.

В результате ХТО формируется диффузионный слой, т.е. изменяется химический состав, фазовый состав, структура и свойства поверхностных слоев. Изменение химического состава обуславливает изменения структуры и свойств диффузионного слоя.

Классификация процессов химико-термической обработки

В зависимости от насыщающего элемента различают следующие процессы химико-термической обработки:

Широкое промышленное применение получили только традиционные процессы насыщения: азотирование, цементация, нитроцементация, цианирование. Цинкование, алитирование, борирование, хромирование, силицирование применяют значительно в меньшей мере.

На практике в подавляющем большинстве случаев ХТО подвергают сплавы на основе железа (стали и чугуны), реже — сплавы на основе тугоплавких металлов, твердые сплавы и еще реже сплавы цветных металлов, хотя практически все металлы могут образовывать диффузионные слои с подавляющим большинством химических элементов Периодической системы элементов Д.И. Менделеева.

При реализации любого процесса ХТО изделия выдерживают определенное время при температуре насыщения в окружении насыщающей среды. Насыщающие среды могут быть твердыми, жидкими или газообразными.

Существующие методы химико-термической обработки можно разделить на три основные группы: насыщение из твердой фазы (в основном, из порошковых засыпок), насыщение из жидкой фазы и насыщение из газовой (или паровой) фазы.

Особо выделяют метод ХТО в ионизированных газах (ХТО в плазме тлеющего разряда).

Насыщение из паст (обмазок) занимает особое положение (в зависимости от состава, консистенции обмазки и температурно-временных условий химико-термической обработки тяготеет к одному из указанных выше методов насыщения)

В настоящее время активно изучают способы ХТО, реализующиеся при воздействии на поверхность концентрированными потоками энергии.

Массоперенос при химико-термической обработке

При любом процессе ХТО в реакционной системе протекают определенные процессы и реакции. Условно весь процесс массопереноса (насыщения) при ХТО может быть представлен в виде пяти последовательно реализующихся стадий:

Но даже эта, довольно общая схема процесса диффузионного насыщения не описывает в полной мере всей сложности явлений, имеющих место при ХТО.

Важнейшим условием образования диффузионного слоя (необходимым, но не достаточным) является существование растворимости диффундирующего элемента в насыщаемом металле при температуре химико-термической обработки. Диффузионные слои могут также образовывать элементы, имеющие при температуре процесса малую растворимость в насыщаемом металле, но образующие с ним химические соединения.

Толщина диффузионного слоя, а следовательно и толщина упрочненного слоя поверхности изделия, является наиболее важной характеристикой химико-термической обработки.

Толщина слоя определяется рядом таких факторов, как температура насыщения, продолжительность процесса насыщения, состав стали, то есть содержание в ней тех или иных легирующих элементов, градиент концентраций насыщаемого элемента между поверхностью изделия и в глубине насыщаемого слоя.

Применение

ХТО применяют с целью:

Требуемые свойства диффузионных (поверхностных) слоев могут формироваться как в процессе химико-термической обработки (азотирование, хромирование, борирование и др.), так и при последующей термообработке (цементация, нитроцементация).

Ссылки

Литература

Химико-термическая обработка металлов и сплавов

борирование – насыщение поверхностного слоя металла бором.

Боридный слой придает изделию повышенную износостойкость особенно при сухом скольжении и трении. Кроме того борирование практически исключает схватываемость (или свариваемость) деталей в холодном состоянии. Борированные детали отличаются высокой стойкостью к кислотам и щелочам;

алитирование — насыщение алюминием. Применяется для придания стали стойкости к агрессивным газам (серный ангидрид, сероводород);

хромирование – насыщение поверхностного слоя хромом. Хромирование малоуглеродистых сталей практически не влияет на их прочностные характеристики. Хромирование сталей с более высоким содержанием хрома называется твердым хромированием, так как в результате операции на поверхности детали образуется карбид хрома, обладающий:

Сталь — деформируемый (ковкий) сплав железа с углеродом (до 2,14%) и другими элементами. Получают, главным образом, из смеси чугуна со стальным ломом в кислородных конвертерах, мартеновских печах и электропечах. Сплав железа с углеродом, содержащий более 2,14% углерода, называют чугуном.

99% всей стали — материал конструкционный в широком смысле слова: включая стали для строительных сооружений, деталей машин, упругих элементов, инструмента и для особых условий работы — теплостойкие, нержавеющие, и т.п.

среднеуглеродистые — 0,3…0,7% С;

высокоуглеродистые — более 0,7 %С.

Для улучшения технологических свойств стали легируют.

Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Сr, Ni, Мо, Wo, V, Аl, В, Тl и др.

), а также Mn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:

низколегированные — менее 2,5%;

ГруппаS, %Р, %
Обыкновенного качества (рядовые)менее 0,06менее 0,07
Качественныеменее 0,04менее 0,035
Высококачественныеменее 0,025менее 0,025
Особовысококачественныеменее 0,015менее 0,025

Стали обыкновенного качества

Стали качественные

Стали качественные по химическому составу бывают углеродистые или легированные (08кп, 10пс, 20). Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более стро-гих требований к составу шихты, процессам плавки и разливки.

Углеродистые стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные, полуспокойные и кипящие. Каждый из этих сортов отличается содержанием кислорода, азота и водорода.

Так в кипящих сталях содержится наибольшее количество этих элементов.

Стали высококачественные

Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные — в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям (содержание серы и фосфора менее 0,03%) и содержанию газов, а следовательно, улучшение механических свойств. Это такие стали как 20А, 15Х2МА.

Стали особовысококачественные

Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора. Например: 18ХГ-Ш, 20ХГНТР-Ш.

К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям — их хорошая свариваемость. Например: С255, С345Т, С390К, С440Д.

Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки. К цементируемым относятся малоуглеродистые стали, содержащие 0,1-0,3% углерода (такие, как 15, 20, 25), а также некоторые легированные стали (15Х, 20Х, 15ХФ, 20ХН 12ХНЗА, 18Х2Н4ВА, 18Х2Н4МА, 18ХГТ, ЗОХГТ, 20ХГР).

Улучшаемые стали

К улучшаемым сталям относят стали, которые подвергают улучшению — термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором (ЗОХРА, 40ХР), хромоникелевые, хромокремниемарганцевые, хромоникельмолибденовые стали.

Высокопрочные стали

Высокопрочные стали — это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях — таких, как ЗОХГСН2А, 40ХН2МА, ЗОХГСА, 38ХНЗМА, ОЗН18К9М5Т, 04ХИН9М2Д2ТЮ.

Пружинные стали

Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости — кремнием, марганцем, хромом, вольфрамом, ванадием, бором (60С2, 50ХГС, 60С2ХФА, 55ХГР).

Подшипниковые стали

Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома (ШХ9, ШХ15).

Автоматные стали

Автоматные стали используют для изготовления неответственных деталей массового производства (винты, болты, гайки и др.)> обрабатываемых на станках-автоматах.

Эффективным металлургическим приемом повышения обрабатываемости резанием является введение в сталь серы, селена, теллура, а также свинца, что способствует образованию короткой и ломкой стружки, а также уменьшает трение между резцом и стружкой.

Недостаток автоматных сталей — пониженная пластичность. К автоматным сталям относятся такие стали, как А12, А20, АЗО, А40Г, АС11, АС40, АЦ45Г2, АСЦЗОХМ, АС20ХГНМ.

Износостойкие стали

Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.)- Пример износостойкой стали — высокомарганцовистая сталь 110Г13Л.

38. Химико-термическая обработка стали. Назначение, виды и общие закономерности. Диффузионное насыщение сплавов металлами и неметаллами

38. Химико-термическая обработка стали. Назначение, виды и общие закономерности. Диффузионное насыщение сплавов металлами и неметаллами

Химико-термической обработка (ХТО) – обработка с сочетанием термического и химического воздействия для изменения состава, структуры и свойств поверхностного слоя детали в необходимом направлении, при котором происходит поверхностное насыщение металлического материала соответствующим элементом (С, Т, В, Аl, Сг, Si, Т и др.) путем его диффузии в атомарном состоянии из внешней среды при высокой температуре.

3) диффузионно-перемещение адсорбированных атомов внутри металла. Развитие процесса диффузии приводит к образованию диффузионного слоя – материала детали у поверхности насыщения, отличающегося от исходного по химическому составу, структуре и свойствам.

Материал детали под диффузионным слоем, не затронутый воздействием насыщающей активной среды, называется сердцевиной.

Общая толщина диффузионного слоя – кратчайшее расстояние от поверхности насыщения до сердцевины.

Эффективная толщина диффузионного слоя – кратчайшее расстояние от поверхности насыщения до мерного участка, которое отличается установленным предельным номинальным значением базового параметра.

Базовый параметр диффузионного слоя – параметр материала, служащий критерием изменения качества в зависимости от расстояния от поверхности насыщения. Переходная зона диффузионного слоя – прилегающая к сердцевине внутренняя часть диффузионного слоя, протяженность которой определяется разностью общей и эффективной толщин.

Этап ХТО – диффузия. В металлах при образовании твердых растворов замещения диффузия в основном происходит по вакансионному механизму. При образовании твердых растворов внедрения реализуется механизм диффузии по междоузлиям.

Цементация стали – ХТО, заключающаяся в диффузионном насыщении поверхностного слоя стали углеродом при нагревании в карбюризаторе, проводят при 930–950 °C, когда устойчив аустенит, растворяющий углерод в больших количествах.

Для цементации используют низкоуглеродистые, легированные стали. Детали поступают на цементацию после механической обработки с припуском на шлифование.

Основные виды цементации – твердая и газовая. Газовая цементация является более совершенным технологическим процессом, чем твердая. В случае газовой цементации можно получить заданную концентрацию углерода в слое; сокращается длительность процесса; обеспечивается возможность полной механизации и автоматизации процесса; упрощается термическая обработка деталей.

Термическая обработка необходима чтобы: исправить структуру и измельчить зерно сердцевины и цементованного слоя; получить высокую твердость в цементованном слое и хорошие механические свойства сердцевины. После цементации термическая обработка состоит из двойной закалки и отпуска. Недостаток такой термообработки – сложность технологического процесса, возможность окисления и обезуглероживания.

Заключительная операция – низкий отпуск при 160–180 °C, переводящий мартенсит закалки в поверхностном слое в отпущенный мартенсит, снимающий напряжения и улучшающий механические свойства.

Азотирование стали – ХТО, заключающаяся в диффузионном насыщении поверхностного слоя стали азотом при нагревании в соответствующей среде.

Твердость азотированного слоя стали выше, чем цементованного, и сохраняется при нагреве до высоких температур (450–500 °C), тогда как твердость цементованного слоя, имеющего мартенситную структуру, сохраняется до 200–225 °C. Азотирование чаще проводят при 500–600 °C.

Диффузионное насыщение сплавов металлами и неметаллами

Борирование – насыщение поверхности металлов и сплавов бором с целью повышения твердости, износостойкости, коррозионной стойкости. Борированию подвергают стали перлитного, ферритного и аустенитного классов, тугоплавкие металлы и никелевые сплавы.

Силицирование. В результате диффузионного насыщения поверхности кремнием повышаются коррозионная стойкость, жаростойкость, твердость и износостойкость металлов и сплавов.

Хромирование – насыщение поверхности изделий хромом. Диффузионному хромированию подвергают чугуны, стали различных классов, сплавы на основе никеля, молибдена, вольфрама, ниобия, кобальта и метал-локерамические материалы. Хромирование производят в вакуумных камерах при 1420 °C.

Алитирование – процесс диффузионного насыщения поверхности изделий алюминием с целью повышения жаростойкости, коррозионной и эрозионной стойкости. При алитировании железа и сталей наблюдается плавное падение концентрации алюминия по толщине слоя.

Назначение поверхностной закалки – повышение твердости, износостойкости и предела выносливости поверхности обрабатываемых изделий. При этом сердцевина остается вязкой и изделие воспринимает ударные нагрузки.

39. Старение. Назначение, изменение микроструктуры и свойств сплавов при старении

Отпуск и старение – это разновидности термической обработки, в результате которой происходит изменение свойств закаленных сплавов.

Термин отпуск принято применять только к тем сплавам, которые были подвергнуты закалке с полиморфным превращением, а термин старение – в случае закалки без полиморфного превращения (после такой закалки фиксируется пересыщенный твердый раствор).

Цель отпуска стали – улучшение ее свойств. Отпуск стали смягчает действие закалки, уменьшает или снимает остаточные напряжения, повышает вязкость, уменьшает твердость и хрупкость стали. Отпуск производится путем нагрева деталей, закаленных на мартенсит до температуры ниже критической.

В стареющих сплавах выделения из пересыщенных твердых растворов встречаются в следующих основных формах: тонкопластинчатой (дискообразной), равноосной (обычно сферической или кубической) и игольчатой. Энергия упругих искажений минимальна для выделений в форме тонких пластин – линз. Основное назначение старения – повышение прочности и стабилизация свойств.

Различают старение естественное, искусственное и после пластической деформации.

Естественное старение – это самопроизвольное повышение прочности (и уменьшение пластичности) закаленного сплава, которое происходит в процессе его выдержки при нормальной температуре. Нагрев сплава увеличивает подвижность атомов, что ускоряет процесс.

Твердые растворы при низких температурах чаще всего распадаются до стадии образования зон. Данные зоны являются дисперсными областями, которые обогащены избыточным компонентом.

Они сохраняют ту кристаллическую структуру, которую имел первоначальный раствор. Зоны носят название в честь Гинье и Престона.

При использовании электронной микроскопии данные зоны можно наблюдать в сплавах Al – Ag, которые имеют вид сферических частиц диаметром

10А. Спалавы Al – Cu имеют зоны-пластины, которые имеют толщину

Химико-термическая и термомеханическая обработка металлов и сплавов

Химико-термическая обработка (ХТО). Представляет собой совокупность технологических процессов, приводящих к изменению химического состава, структуры и свойств поверхности металла без изменения состава, структуры и свойств его внутренней области.

Химико-термическая обработка является основным способом поверхностного упрочнения деталей и заключается в насыщении поверхностного слоя изделия легирующими элементами.

Такой вид термообработки позволяет также придать изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т. д.

Изменение химического состава поверхностных слоев достигается в результате их взаимодействия при повышенных температурах с насыщающей средой, содержащей легирующие элементы.

В зависимости от физико-химического состояния среды различают ХТО из газовой, жидкой, твердой или паровой фазы (чаще применяются первые два метода). Основными параметрами химико-термической обработки являются температура нагрева и продолжительность выдержки. Выбор легирующего элемента (или комплекса элементов) определяется требуемыми свойствами поверхности изделия.

Примерами ХТО могут служить следующие виды обработки: цементация — насыщение углеродом, азотирование — насыщение азотом, цианирование — насыщение углеродом и азотом, хромирование — насыщение хромом и др. Более подробно виды ХТО рассмотрены в гл. 13.

Химико-термической обработке подвергают изделия из стали, чугуна, чистых металлов, сплавов на основе никеля, молибдена, вольфрама, кобальта, ниобия, меди, алюминия идр.

В основе методов ХТО лежат процессы диссоциации, адсорбции, диффузии. При этом вблизи поверхности изделия при ХТО происходят физико-химические процессы:

Для осуществления процессов адсорбции и диффузии необходимо, чтобы насыщающий элемент взаимодействовал с основным металлом, образуя твердые растворы или химические соединения.

Концентрация диффундирующего элемента на поверхности металла, а также структура и свойства диффузионного слоя зависят от метода ХТО.

Глубина диффузии элемента возрастает с повышением температуры и с увеличением продолжительности процесса.

Диффузионный слой, образующийся при ХТО, изменяет структурно-энергетическое состояние поверхности и оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объемные свойства изделий.

Возможен и обратный процесс — удаление элементов из поверхностного слоя, которое осуществляется в специальных средах.

Термомеханическая обработка (ТМО). Представляет собой совокупность операций деформации, нагрева и охлаждения, производимых в различной последовательности.

В результате ТМО формирование окончательной структуры металла и его свойств происходит в условиях повышенной плотности и оптимального распределения дефектов кристаллического строения, созданных пластической деформацией.

Особенностью этого способа изменения свойств металлов и сплавов является сочетание операций обработки давлением и термической обработки.

Совмещение пластической деформации с фазовыми превращениями было впервые реализовано на практике в начале XX века в процессе производства стальной проволоки. Использование комбинированного воздействия пластической деформации и термической обработки привело к получению высоких механических свойств, которые были недостижимы при других способах упрочняющей обработки.

Химико-термическая обработка металлов

Химико-термическая обработка металлов и сплавов заключается в нагреве и выдержке их при высокой температуре в активных средах, в результате чего изменяются химический состав, структура и свойства поверхностных слоев металлов и сплавов.

Для создания такой среды используют твердые, жидкие и газообразные вещества, химический состав н свойства которых определяют изменение химического состава поверхностных слоев обрабатываемого металла. В промышленности широко применяют насыщение углеродом, азотом, совместное насыщение азотом и углеродом, хромом, алюминием.

Все шире применяют насыщение бором, кремнием, вольфрамом, а также совместное насыщение несколькими элементами.

Химико-термической обработке подвергаются самые различные металлы и сплавы для придания им специальных свойств: усталостной прочности, износо-, коррозийно- и жаростойкости и пр. За счет применения химико-термической обработки дефицитные металлы можно заменять на более дешевые, легируя соответствующим образом их поверхность.

Химико-термическая обработка применяется для тугоплавких металлов, металлокерамических конструкционных материалов и твердых сплавов. Ведутся работы по разработке агрегатов для этой обработки.

Продолжаются теоретические и экспериментальные исследования для создания научных основ управления процессами, происходящими при химико-термической обработке.

Химико-термическая обработка состоит из следующих стадий:

Абсорбционный процесс

Абсорбционный процесс может включать простую физическую абсорбцию, при которой полнатомиый абсорбционный слой на всей поверхности изделия или в ее активных участках образуется вследствие действия ваи-дер-ваальсовых сил притяжения. Возможна химсорбция с возиикновеиием сильных химических связей между абсорбированными атомами и атомами металлической поверхности.

Условием абсорбции является наличие растворимости и образование химического соединения. Имеются две точки зрения на первичные образования.

По первой вначале образуется химическое соединение, а затем идут процессы растворения и диффузии, по второй вначале происходит растворение абсорбирующих атомов, а затем возможно образование химического соединения. Экспериментально наблюдается второй случай.

Ускорение процесса

Для ускорения процессов химико-термической обработки перспективно применение электрического тока (электро-химико- термическая обработка ЭХТО): метод тлеющего разряда, метод цементации с применением ТВЧ, ТПЧ и электроконтактного нагрева.

Это позволяет повысить скорость процессов химико-термической обработки, во много раз сократить время (часто до нескольких минут). Применение ЭХТО позволяет управлять структурой диффузионного слоя, повышать его пластичность и работоспособность.

По методу тлеющего разряда электрический ток пропускается через слой частиц проводящих материалов, находящихся в недосжиженном состоянии, и изделие. Применение тлеющего разряда, например при азотировании, приводит к расщеплению молекулы азота. Образовавшиеся атомы азота абсорбируются поверхностью стали.

Происходит при включении тока высокого напряжения (900 — 1100 В) между изделиями, которые служат катодом и крышкой (анодом). При этом в контейнере, где находятся изделия, поддерживается низкое давление (1 — 10 мм рт. ст.).

Диффузионное насыщение

Для диффузионного насышения металлов и сплавов применяют порошковый (твердофазный), жидкий (жидкофазный), безэлектролизный, электролизный, газовый (газофазный) методы. Разрабатывают также вакуумный, гальвано-диффузионный, шликерный методы (из паст и суспензий) в кипящем или виброкипящем слое, в тлеющем разряде и другие методы насыщения.

При твердофазном насыщении могут протекать два процесса: а) образование и доставка (перенос) активных атомов, насыщающих элементов через газовую фазу, заполняющую все зазоры между частицами порошковой смеси; б) твердофазная диффузия в местах контакта (плотного соприкосновения) частиц порошковой смеси с насыщаемым металлом.

Эффект насыщения зависит от размера частиц насыщающей порошковой смеси и активатора процесса. Скорость насыщения зависит от площади контактной поверхности взаимодействующих составляющих смеси и растет с повышением ее. Толщина слоя увеличивается с уменьшением размеров зерна.

Однако, вероятно, значение твердофазной диффузии при насыщении в порошковых смесях мало.

Перспективным методом диффузионного насыщения, особенно многокомпонентного, является электронно-лучевое напыление с последующим диффузионным отжигом Предварительно изготавливаются заготовки из материала, имеющего в своей’ составе требуемые для насыщения элементы, затем при помощи электронной пушки напыляют на деталь слой, состоящий из; требуемых компонентов. Деталь с напыленным слоем отжигают для получения заданной глубины слоя.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *