Что называется гармоникой синусоидального колебания
гармонические (синусоидальные) колебания
Смотреть что такое «гармонические (синусоидальные) колебания» в других словарях:
СИНУСОИДАЛЬНЫЕ КОЛЕБАНИЯ — колебания, при к рых изменения колеблющейся величины происходят по синусоиде; то же, что гармонические колебания. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия
Синусоидальные колебания — колебания, при которых изменения колеблющейся величины происходят по синусоиде (См. Синусоида), то же, что Гармонические колебания … Большая советская энциклопедия
КОЛЕБАНИЯ — КОЛЕБАНИЯ, процессы (в наиболее общем смысле), периодически меняющие свое направление со временем. Процессы эти могут быть весьма разнообразными. Если напр. подвесить на стальной спиральной пружине тяжелый шар, оттянуть его и затем предоставить… … Большая медицинская энциклопедия
Колебания — движения (изменения состояния), обладающие той или иной степенью повторяемости. При К. маятника повторяются отклонения его в ту и другую сторону от вертикального положения. При К. пружинного маятника груза, висящего на пружине,… … Большая советская энциклопедия
КОЛЕБАНИЯ — движения (изменения состояния), характеризующиеся той или иной степенью повторяемости во времени. К. могут иметь разл. физ. природу, а также отличаться механизмом возбуждения, характером, степенью повторяемости и быстротой смены состояний (см.… … Большой энциклопедический политехнический словарь
Гармонический осциллятор — У этого термина существуют и другие значения, см. Осциллятор. Гармонический осциллятор (в классической механике) система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x… … Википедия
РЕЗОНАТОР — (от лат. resono звучу в ответ, откликаюсь), колебательная система, способная совершать колебания макс. амплитуды (резонировать) при воздействии внеш. силы определ. частоты и формы. В большинстве случаев Р. отзываются на гармонические… … Физическая энциклопедия
Преобразование Фурье — Преобразование Фурье операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … … Википедия
Гармонические колебания
Гармоническое колебание — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид
,
где х — смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А — амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω — циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд — полная фаза колебаний, — начальная фаза колебаний.
Обобщенное гармоническое колебание в дифференциальном виде
(Любое нетривиальное [1] решение этого дифференциального уравнения — есть гармоническое колебание с циклической частотой )
Содержание
Виды колебаний
Применение
Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:
См. также
Примечания
Литература
Полезное
Смотреть что такое «Гармонические колебания» в других словарях:
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется … Современная энциклопедия
Гармонические колебания — ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется … Иллюстрированный энциклопедический словарь
Гармонические колебания — Колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (ωt + φ) или х … Большая советская энциклопедия
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда оно колеблется вдоль линии, перемещаясь на одинаковое… … Научно-технический энциклопедический словарь
гармонические колебания — Механические колебания, при которых обобщенная координата и (или) обобщенная скорость изменяются пропорционально синусу с аргументом, линейно зависящим от времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук … Справочник технического переводчика
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — (см.), при которых физ. величина изменяется с течением времени по закону синуса или косинуса (напр. изменения (см.) и скорости при колебании (см.) или изменения (см.) и силы тока при электрических Г. к.) … Большая политехническая энциклопедия
Гармонические колебания — 19. Гармонические колебания Колебания, при которых значения колеблющейся величины изменяются во времени по закону Источник … Словарь-справочник терминов нормативно-технической документации
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — периодич. колебания, при к рых изменение во времени физ. величины происходит по закону синуса или косинуса (см. рис.): s = Аsin(wt+ф0), где s отклонение колеблющейся величины от её ср. (равновесного) значения, А=const амплитуда, w= const круговая … Большой энциклопедический политехнический словарь
Гармонические колебания.
Гармонические колебания — это колебания, при которых физическая величина меняется во времени по синусоидальному закону:
.
где х — значение колеблющейся величины в момент времени t, А — амплитуда, ω — круговая частота, φ — начальная фаза колебаний, (φt + φ) — полная фаза колебаний. При этом величины А, ω и φ — постоянные.
Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость, для электрических колебаний — напряжение и сила тока.
Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).
Превращения энергии при гармонических колебаниях.
В процессе колебаний происходит переход потенциальной энергии Wp в кинетическую Wk и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальнейшее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего первоначального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости, она равна:
.
где vm — максимальная скорость тела (в положении равновесия), хm = А — амплитуда.
Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.
Гармонические колебания
9 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Механические колебания
Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.
Колебания делятся на два вида: свободные и вынужденные.
Свободные колебания
Это колебания, которые происходят под действием внутренних сил в колебательной системе.
Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.
Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:
Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.
Характеристики колебаний
Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.
Формула периода колебаний
T = t/N
N — количество колебаний [-]
Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.
Формула частоты
ν = N/t = 1/T
N — количество колебаний [-]
Она используется в уравнении гармонических колебаний:
Гармонические колебания
Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:
Уравнение гармонических колебаний
x — координата в момент времени t [м]
t — момент времени [с]
2πνtв этом уравнении — это фаза. Ее обозначают греческой буквой φ
Фаза колебаний
t — момент времени [с]
Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.
На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.
Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.
На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.
Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.
Математический маятник
Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.
Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.
Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).
Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:
Формула периода колебания математического маятника
g — ускорение свободного падения [м/с^2]
На планете Земля g = 9,8 м/с2
Пружинный маятник
Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.
В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.