Что называется электрической проводимостью
Что такое электрическая проводимость
Говоря о свойстве того или иного тела препятствовать прохождению через него электрического тока, мы обычно используем термин «электрическое сопротивление». В электронике он удобен, есть даже специальные микроэлектронные компоненты, резисторы, обладающие тем или иным номинальным сопротивлением.
Но существует также понятие «электрическая проводимость» или «электропроводность», характеризующее способность тела проводить электрический ток.
Тогда как сопротивление обратно пропорционально току, проводимость прямо пропорциональна току, то есть проводимость — это обратная величина по отношению к электрическому сопротивлению.
Сопротивление измеряется в омах, а проводимость — в сименсах. Но фактически речь всегда идет об одном и том же свойстве материала — о его способности проводить электрический ток.
Электронная проводимость подразумевает то, что носителями заряда, образующими ток в веществе, являются электроны. Прежде всего электронной проводимостью обладают металлы, хотя почти все материалы в большей или меньшей степени способны к ней.
Чем выше температура материала — тем меньше его электронная проводимость, поскольку с ростом температуры тепловое движение все больше мешает упорядоченному движению электронов и значит препятствует направленному току.
Электронная проводимость тем больше, чем короче проводник, чем больше площадь его поперечного сечения, чем значительнее в нем концентрация свободных электронов (чем меньше удельное сопротивление).
Практически в электротехнике наиболее важно передавать электрическую энергию с минимальными потерями. По этой причине металлы играют в ней крайне важную роль. Особенно те из них, которые обладают максимальной электропроводностью, то есть наименьшим удельным электрическим сопротивлением: серебро, медь, золото, алюминий. Концентрация свободных электронов в металлах выше чем в диэлектриках и полупроводниках.
В качестве проводников электрической энергии, из металлов экономически выгоднее всего использовать алюминий и медь, поскольку медь существенно дешевле серебра, но при этом удельное электрическое сопротивление меди лишь чуть-чуть больше чем у серебра, соответственно проводимость меди совсем немного меньше серебра. Другие металлы не имеют столь высокой значимости для промышленного производства проводников.
Газообразные и жидкие среды, в которых есть свободные ионы, обладают ионной проводимостью. Ионы, как и электроны, являются носителями заряда, и могут перемещаться под действием электрического поля по всему объему данной среды. Такой средой может выступать электролит. Чем выше температура электролита — тем выше его ионная проводимость, так как с ростом теплового движения, энергия ионов возрастает, а вязкость среды уменьшается.
При недостатке электронов в кристаллической решетке материала, может иметь место дырочная проводимость. Электроны переносят заряд, но они выступают как-бы освобожденными местами при перемещении дырок — пустых мест в кристаллической решетке материала. Свободные электроны здесь не перемещаются подобно газовому облаку в металлах.
Дырочная проводимость проявляется в полупроводниках наравне с электронной проводимостью. Полупроводники в различных комбинациях позволяют управлять величиной проводимости, что демонстрируется в различных микроэлектронных приборах: диодах, транзисторах, тиристорах и т.д.
Прежде всего в качестве проводников в электротехнике еще в 19 веке начали использовать металлы, вместе с ними — диэлектрики, изоляторы (с наименьшей электропроводностью), такие как слюда, резина, фарфор.
В электронике получили широкое распространение полупроводники, занявшие почетное промежуточное место между проводниками и диэлектриками. Большинство современных полупроводников получают на основе кремния, германия, углерода. Другие вещества используются гораздо реже.
Электропроводность
Полезное
Смотреть что такое «Электропроводность» в других словарях:
электропроводность — электропроводность … Орфографический словарь-справочник
ЭЛЕКТРОПРОВОДНОСТЬ — (s), Величина, характеризующая способность веществ проводить электрический ток. Определяется наличием в них подвижных заряженных частиц (носителей заряда) электронов, ионов и др. Измеряется в (Ом?м) 1. Величина 1/s называется удельным… … Современная энциклопедия
ЭЛЕКТРОПРОВОДНОСТЬ — (электрическая проводимость, проводимость), способность тела пропускать электрич. ток под воздействием электрич. поля, а также физ. величина, количественно характеризующая эту способность. Проводники всегда содержат свободные (или квазисвободные) … Физическая энциклопедия
Электропроводность — (s), величина, характеризующая способность веществ проводить электрический ток. Определяется наличием в них подвижных заряженных частиц (носителей заряда) электронов, ионов и др. Измеряется в (Ом´м) 1. Величина 1/s называется удельным… … Иллюстрированный энциклопедический словарь
ЭЛЕКТРОПРОВОДНОСТЬ — (проводимость) способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (носителей заряда) электроионов, ионов и др., а также физическая Величина (v), количественно характеризующая эту способность … Большой Энциклопедический словарь
ЭЛЕКТРОПРОВОДНОСТЬ — ЭЛЕКТРОПРОВОДНОСТЬ, электропроводности, мн. нет, жен. (физ.). Способность проводить, пропускать электричество. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ЭЛЕКТРОПРОВОДНОСТЬ — ЭЛЕКТРОПРОВОДНОСТЬ, и, ж. Способность тела проводить электрический ток. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
электропроводность — сущ., кол во синонимов: 1 • проводность (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
ЭЛЕКТРОПРОВОДНОСТЬ — свойство вещества переносить электрические заряды (в г. п., м лах) под действием внешнего электрического поля. Удельная Э. величина, обратная сопротивлению электрическому удельному. Единицей измерения удельной Э. в СГС служит Мом/см; в СИ… … Геологическая энциклопедия
ЭЛЕКТРОПРОВОДНОСТЬ — ЭЛЕКТРОПРОВОДНОСТЬ, способность проводить электричество. По своей способности проводить электрический ток все тела делятся на две группы проводники первого и второго рода. Проводники 1 го рода, представленные металлами и потому называемые также… … Большая медицинская энциклопедия
Электрическая проводимость
Классическая электродинамика | ||||||||||||
Электричество · Магнетизм | ||||||||||||
| ||||||||||||
См. также: Портал:Физика |
Содержание
Удельная проводимость
Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:
В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.
Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:
векторы же плотности тока и напряжённости поля в этом случае, вообще говоря, не коллинеарны.
Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) ортогональную систему координат (собственные оси тензора проводимости), в которой тензор проводимости диагонализуется. В таких координатах соотношение упрощается и записывается так:
(но такое соотношение для анизотропной среды реализуется только в одних выделенных координатах) [2]
Величина, обратная удельной проводимости, называется удельным сопротивлением.
Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:
Связь с коэффициентом теплопроводности
Закон Видемана — Франца устанавливает однозначную связь удельной электрической проводимости с коэффициентом теплопроводности :
Электропроводность металлов
Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускался постоянный электрический ток. После этого исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока. Эти опыты показали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос о природе носителей заряда в металлах.
Опыты Толмена и Стюарта
Прямым доказательством, что электрический ток в металлах обуславливается движением электронов, были опыты Толмена и Стюарта, проведённые в 1916 г. Идея этих опытов была высказана Мандельштамом и Папалекси в 1913 г.
Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.
При достаточно плотной намотке и тонких проводах можно считать, что линейное ускорение катушки при торможении направлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции — направленная противоположно ускорению ( — масса электрона). Под её действием электрон ведёт себя в металле так, как если бы на него действовало некоторое эффективное электрическое поле:
Поэтому эффективная электродвижущая сила в катушке, обусловленная инерцией свободных электронов, равна
где L — длина провода на катушке. [4]
Введём обозначения: I — сила тока, протекающего по замкнутой цепи, R — сопротивление всей цепи, включая сопротивление проводов катушки и проводов внешней цепи и гальванометра. Запишем закон Ома в виде:
Тогда за время торможения через гальванометр пройдёт заряд
Удельная проводимость некоторых веществ
Удельная проводимость приведена при температуре 20 °C [5] :
Электропроводность веществ
В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы скорости тока и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.
Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда — ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер — это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.
Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).
Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.
Наиболее высокой электропроводностью обладают проводники электрического тока, и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) — перемещением ионов — частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.
Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.
Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.
Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.
Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив — имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от напряженности электрического поля, а вот скорость распространения электрического тока по проводнику как раз равна скорости света.
Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля — от соседа к соседу.
Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.
Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.
Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном — намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.
Единица изменения сопротивления — Ом. Сопротивление R = 1 Ом — это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом — столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.
Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность — это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.
Единица измерения электропроводности G (проводимости) — Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.
Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие удельное электрическое сопротивление, величина которого «р» характеризует проводящие свойства того или иного вещества.
Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м — для удельного сопротивления, и См*м/мм2 — для удельной электропроводности.
Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.
Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.
Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.
При понижении температуры — наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других — сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.
Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.