Что называется электрической проводимостью и в каких единицах она измеряется

Сопротивление, проводимость и закон Ома

Что называется электрической проводимостью и в каких единицах она измеряется

Электрическое сопротивление физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.

Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.

В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости

Что называется электрической проводимостью и в каких единицах она измеряется

где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².

Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.

Что называется электрической проводимостью и в каких единицах она измеряетсяРис. 1. Удельное сопротивление проводника, ρ

Сопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).

Что называется электрической проводимостью и в каких единицах она измеряетсяРис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников

Закон Ома

В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.

Существует несколько интерпретаций закона Ома.

Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R

Что называется электрической проводимостью и в каких единицах она измеряетсяРис. 3. Закон Ома для участка цепи

Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А

Что называется электрической проводимостью и в каких единицах она измеряется

На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).

Что называется электрической проводимостью и в каких единицах она измеряетсяРис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогии

Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.

Проводимость

Величина обратная сопротивлению, называется проводимостью:

Единица проводимости называется сименс (См): G, (g) = 1/Ом = См.

Источник

Электрическая проводимость

Что называется электрической проводимостью и в каких единицах она измеряется Классическая электродинамика
Что называется электрической проводимостью и в каких единицах она измеряется
Электричество · Магнетизм
Электростатика
Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал
Магнитостатика
Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Электродинамика
Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле
Электрическая цепь
Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс
Ковариантная формулировка
Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток
Известные учёные
Генри Кавендиш
Майкл Фарадей
Никола Тесла
Андре-Мари Ампер
Густав Роберт Кирхгоф
Джеймс Клерк (Кларк) Максвелл
Генри Рудольф Герц
Альберт Абрахам Майкельсон
Роберт Эндрюс Милликен
См. также: Портал:Физика

Содержание

Удельная проводимость

Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

Что называется электрической проводимостью и в каких единицах она измеряется

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

Что называется электрической проводимостью и в каких единицах она измеряется

векторы же плотности тока и напряжённости поля в этом случае, вообще говоря, не коллинеарны.

Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) ортогональную систему координат (собственные оси тензора проводимости), в которой тензор проводимости диагонализуется. В таких координатах соотношение упрощается и записывается так:

Что называется электрической проводимостью и в каких единицах она измеряется

(но такое соотношение для анизотропной среды реализуется только в одних выделенных координатах) [2]

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:

Что называется электрической проводимостью и в каких единицах она измеряется

Связь с коэффициентом теплопроводности

Закон Видемана — Франца устанавливает однозначную связь удельной электрической проводимости Что называется электрической проводимостью и в каких единицах она измеряетсяс коэффициентом теплопроводности Что называется электрической проводимостью и в каких единицах она измеряется:

Что называется электрической проводимостью и в каких единицах она измеряется

Электропроводность металлов

Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускался постоянный электрический ток. После этого исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока. Эти опыты показали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос о природе носителей заряда в металлах.

Опыты Толмена и Стюарта

Прямым доказательством, что электрический ток в металлах обуславливается движением электронов, были опыты Толмена и Стюарта, проведённые в 1916 г. Идея этих опытов была высказана Мандельштамом и Папалекси в 1913 г.

Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.

При достаточно плотной намотке и тонких проводах можно считать, что линейное ускорение катушки при торможении Что называется электрической проводимостью и в каких единицах она измеряетсянаправлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции — Что называется электрической проводимостью и в каких единицах она измеряетсянаправленная противоположно ускорению ( Что называется электрической проводимостью и в каких единицах она измеряется— масса электрона). Под её действием электрон ведёт себя в металле так, как если бы на него действовало некоторое эффективное электрическое поле:

Что называется электрической проводимостью и в каких единицах она измеряется

Поэтому эффективная электродвижущая сила в катушке, обусловленная инерцией свободных электронов, равна

Что называется электрической проводимостью и в каких единицах она измеряется

где L — длина провода на катушке. [4]

Введём обозначения: I — сила тока, протекающего по замкнутой цепи, R — сопротивление всей цепи, включая сопротивление проводов катушки и проводов внешней цепи и гальванометра. Запишем закон Ома в виде:

Что называется электрической проводимостью и в каких единицах она измеряется

Что называется электрической проводимостью и в каких единицах она измеряется

Тогда за время торможения через гальванометр пройдёт заряд

Что называется электрической проводимостью и в каких единицах она измеряется

Удельная проводимость некоторых веществ

Удельная проводимость приведена при температуре 20 °C [5] :

Источник

Что называется электрической проводимостью и в каких единицах она измеряется

Что называется электрической проводимостью и в каких единицах она измеряется

Электрическим током (I) называется направленное движение электрических зарядов (ионов — в электролитах, электронов проводимости в металлах).
Необходимым условием для протекания электрического тока является замкнутость электрической цепи.

Электрический ток измеряется в амперах (А).

Производными единицами измерения тока являются:
1 килоампер (кА) = 1000 А;
1 миллиампер (мА) 0,001 А;
1 микроампер (мкА) = 0,000001 А.

Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.

Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.

Единицей разности электрических потенциалов является вольт (В).
1 В = (1 Вт) : (1 А).

Производными единицами измерения напряжения являются:

1 киловольт (кВ) = 1000 В;
1 милливольт (мВ) = 0,001 В;
1 микровольт (мкВ) = 0,00000 1 В.

Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.

Электрическое сопротивление измеряется в омах (Ом).
1 Ом = (1 В) : (1 А).

Производными единицами измерения сопротивления являются:

1 килоОм (кОм) = 1000 Ом;
1 мегаОм (МОм) = 1 000 000 Ом;
1 миллиОм (мОм) = 0,001 Ом;
1 микроОм (мкОм) = 0,00000 1 Ом.

Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).

Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую.
Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.

Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:

Производными единицами измерения электрической мощности являются:

1 киловатт (кВт) = 1000 Вт;
1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
1 милливатт (мВт) = 0,001 Вт; о1i
1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.

Единицами измерения электрической энергии являются:

1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м);
1 киловатт-час (кВт ч) = 3,б 106 Вт сек.

Пример. Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем.
Вт*сек, или, разделив эту величину на 1000 и 3600, получим энергию в киловатт-часах:

W = 1980000/(1000*3600) = 0,55кВт*ч

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

Таблица физических величин и их описание:

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

В практике встречаются

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

Источник

Электропроводность

Что называется электрической проводимостью и в каких единицах она измеряется

Что называется электрической проводимостью и в каких единицах она измеряется

Полезное

Смотреть что такое «Электропроводность» в других словарях:

электропроводность — электропроводность … Орфографический словарь-справочник

ЭЛЕКТРОПРОВОДНОСТЬ — (s), Величина, характеризующая способность веществ проводить электрический ток. Определяется наличием в них подвижных заряженных частиц (носителей заряда) электронов, ионов и др. Измеряется в (Ом?м) 1. Величина 1/s называется удельным… … Современная энциклопедия

ЭЛЕКТРОПРОВОДНОСТЬ — (электрическая проводимость, проводимость), способность тела пропускать электрич. ток под воздействием электрич. поля, а также физ. величина, количественно характеризующая эту способность. Проводники всегда содержат свободные (или квазисвободные) … Физическая энциклопедия

Электропроводность — (s), величина, характеризующая способность веществ проводить электрический ток. Определяется наличием в них подвижных заряженных частиц (носителей заряда) электронов, ионов и др. Измеряется в (Ом´м) 1. Величина 1/s называется удельным… … Иллюстрированный энциклопедический словарь

ЭЛЕКТРОПРОВОДНОСТЬ — (проводимость) способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (носителей заряда) электроионов, ионов и др., а также физическая Величина (v), количественно характеризующая эту способность … Большой Энциклопедический словарь

ЭЛЕКТРОПРОВОДНОСТЬ — ЭЛЕКТРОПРОВОДНОСТЬ, электропроводности, мн. нет, жен. (физ.). Способность проводить, пропускать электричество. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ЭЛЕКТРОПРОВОДНОСТЬ — ЭЛЕКТРОПРОВОДНОСТЬ, и, ж. Способность тела проводить электрический ток. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

электропроводность — сущ., кол во синонимов: 1 • проводность (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

ЭЛЕКТРОПРОВОДНОСТЬ — свойство вещества переносить электрические заряды (в г. п., м лах) под действием внешнего электрического поля. Удельная Э. величина, обратная сопротивлению электрическому удельному. Единицей измерения удельной Э. в СГС служит Мом/см; в СИ… … Геологическая энциклопедия

ЭЛЕКТРОПРОВОДНОСТЬ — ЭЛЕКТРОПРОВОДНОСТЬ, способность проводить электричество. По своей способности проводить электрический ток все тела делятся на две группы проводники первого и второго рода. Проводники 1 го рода, представленные металлами и потому называемые также… … Большая медицинская энциклопедия

Источник

ПРОВОДИ́МОСТЬ ЭЛЕКТРИ́ЧЕСКАЯ

Что называется электрической проводимостью и в каких единицах она измеряется Что называется электрической проводимостью и в каких единицах она измеряется Что называется электрической проводимостью и в каких единицах она измеряется

Введение и определения

Удельная электрическая проводимость (или удельная электропроводность)

является мерой способности вещества проводить электрический ток или перемещать электрические заряды в нем. Это отношение плотности тока к напряженности электрического поля. Если рассмотреть куб из проводящего материала со стороной 1 метр, то удельная проводимость будет равна электрической проводимости, измеренной между двумя противоположными сторонами этого куба.

Удельная проводимость связана с проводимостью следующей формулой:

— электрическая проводимость,
σ
— удельная электрическая проводимость,
А
— поперечное сечение проводника, перпендикулярное направлению электрического тока и
l
— длина проводника. Эту формулу можно использовать с любым проводником в форме цилиндра или призмы. Отметим, что эту формулу можно использовать и для прямоугольного параллелепипеда, потому что он является частным случаем призмы, основанием которой является прямоугольник. Напомним, что удельная электрическая проводимость — величина, обратная удельному электрическому сопротивлению.

Людям, далеким от физики и техники, бывает сложно понять разницу между проводимостью проводника и удельной проводимостью вещества. Между тем, конечно, это разные физические величины. Проводимость — это свойство данного проводника или устройства (например, резистора или гальванической ванны), в то время как удельная проводимость — это неотъемлемое свойство материала, из которого изготовлены этот проводник или устройство. Например, удельная проводимость меди всегда одинаковая, независимо от того как изменяется форма и размеры предмета из меди. В то же время, проводимость медного провода зависит от его длины, диаметра, массы, формы и некоторых других факторов. Конечно, похожие объекты из материалов с более высокой удельной проводимостью имеют более высокую проводимость (хотя и не всегда).

Что называется электрической проводимостью и в каких единицах она измеряется
Удельная проводимость меди — величина постоянная и не зависит от формы и размеров предметов, изготовленных из меди

В Международной системе единиц (СИ) единицей удельной электрической проводимости является сименс на метр (См/м)

. Входящая в нее единица проводимости названа в честь немецкого ученого, изобретателя, предпринимателя Вернера фон Сименса (1816–1892 гг.). Основанная им в 1847 г. компания Siemens AG (Сименс) является одной из самых больших компаний, выпускающих электротехническое, электронное, энергетическое, транспортное и медицинское оборудование.

Что называется электрической проводимостью и в каких единицах она измеряется
Слева: Вернер фон Сименс (источник: Википедия); справа: центральный офис Siemens Canada Limited в Оквилле, Онтарио.

Диапазон удельных электрических проводимостей очень широк: от материалов, обладающих высоким удельным сопротивлением, таких как стекло (которое, между прочим, хорошо проводит электрический ток, если его нагреть докрасна) или полиметилметакрилат (органическое стекло) до очень хороших проводников, таких как серебро, медь или золото. Удельная электрическая проводимость определяется количеством зарядов (электронов и ионов), скоростью их движения и количеством энергии, которое они могут переносить. Средними значениями удельной проводимости обладают водные растворы различных веществ, которые используются, например, в гальванических ваннах. Другим примером электролитов со средними значениями удельной проводимости является внутренняя среда организма (кровь, плазма, лимфа и другие жидкости).

Проводимость металлов, полупроводников и диэлектриков подробно обсуждается в следующих статьях Конвертера физических величин TranslatorsCafe.com: Подробнее об электрическом сопротивлении, Подробнее об удельном электрическом сопротивлении и Электрическая проводимость. В этой статье мы обсудим подробнее удельную проводимость электролитов, а также методы и простое оборудование для ее измерения.

Удельная проводимость

Удельной электропроводностью (удельной проводимостью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

при этом векторы плотности тока и напряжённости поля в общем случае не коллинеарны.

Величины σ i <\displaystyle \sigma _> называют главными значениями

тензора удельной проводимости. В общем случае приведённое соотношение выполняется только в одной системе координат[3].

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае[4] приближённо, причём приближение это хорошо только для сравнительно малых величин E

. Впрочем, и при таких величинах
E
, когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность.

Также в случае нелинейной зависимости J

от
E
(то есть в общем случае) может явно вводиться
дифференциальная
удельная электропроводность, зависящая от
E
:
σ = d J / d E <\displaystyle \sigma =dJ/dE>(для анизотропных сред: σ i k = d J i / d E k <\displaystyle \sigma _=dJ_/dE_> ).

Удельная электрическая проводимость электролитов и ее измерение

Что называется электрической проводимостью и в каких единицах она измеряется
Внутренняя среда организма — кровь, лимфа, тканевая жидкость — это всё электролиты с высокой концентрацией хлорида натрия и других солей; удельная проводимость цельной крови при 37°C — приблизительно 0,54 См/м

Удельная проводимость водных растворов, в которых электрический ток возникает в результате движения заряженных ионов, определяется количеством носителей заряда (концентрацией вещества в растворе), скоростью их движения (подвижность ионов зависит от температуры) и зарядом, которые они несут (определяемой валентностью ионов). Поэтому в большинстве водных растворов повышение концентрации приводит к увеличению числа ионов и, следовательно, к увеличению удельной проводимости. Однако после достижения определенного максимума удельная проводимость раствора может начать уменьшаться при дальнейшем увеличении концентрации раствора. Поэтому растворы с двумя различными концентрациями одной и той же соли могут иметь одинаковую удельную проводимость.

Температура также влияет на проводимость, так как при повышении температуры ионы движутся быстрее, что приводит к увеличению удельной проводимости. Чистая вода — плохой проводник электричества. Обычная дистиллированная вода, в которой содержится в равновесном состоянии углекислый газ из воздуха и общая минерализация менее 10 мг/л, имеет удельную электрическую проводимость около 20 мСм/см. Удельная проводимость различных растворов приведена ниже в таблице.

Что называется электрической проводимостью и в каких единицах она измеряется
Удельная проводимость дистиллированной воды приблизительно 0,055 мкСм/см

Удельная проводимость различных водных растворов при 25°С
Чистая вода0,055 мкСм/см
Деионизированная вода1,0 мкСм/см
Дождевая вода50 мкСм/см
Питьевая вода50—500 мкСм/см
Бытовые сточные воды0,05—1,5 мСм/см
Промышленные сточные воды0,05—10 мСм/см
Морская вода50 мСм/см
Хлорид натрия, 1 моль/л85 мСм/см
Хлористоводородная (соляная) кислота 1 моль/л332 мСм/см

Что называется электрической проводимостью и в каких единицах она измеряется
Два электрода датчика удельной проводимости (слева) и датчик температуры (справа), используемый для автоматической температурной компенсации измерений в приборе для определения минерализации воды (англ. Total Dissolved Solids, TDS.)

Для определения удельной проводимости раствора используется измеритель сопротивления (омметр) или проводимости. Это практически одинаковые устройства, отличающиеся только шкалой. Оба измеряют падение напряжения на участке цепи, по которому протекает электрический ток от батареи прибора. Измеренное значение проводимости вручную или автоматически пересчитывается в удельную проводимость. Это осуществляется с учетом физических характеристик измерительного устройства или датчика. Датчики удельной проводимости устроены просто: это пара (или две пары) электродов, погруженных в электролит. Датчики для измерения удельной проводимости характеризуются постоянной датчика удельной проводимости

, которая в простейшем случае определяется как отношение расстояния между электродами
D
к площади (электрода), перпендикулярной течению тока
А
K = D/A

Эта формула хорошо работает, если площадь электродов значительно больше расстояния между ними, так как в этом случае большая часть электрического тока протекает между электродами. Пример: для 1 кубического сантиметра жидкости K = D/A

= 1 см/1 см² = 1 см⁻¹. Отметим, что датчики удельной проводимости с маленькими электродами, раздвинутыми на относительно большое расстояние, характеризуются значениями постоянной датчика 1.0 cm⁻¹ и выше. В то же время, датчики с относительно большими электродами, расположенными близко друг к другу, имеют постоянную 0,1 cm⁻¹ или менее. Постоянная датчика для измерения удельной электрической проводимости различных устройств находится в пределах от 0,01 до 100 cm⁻¹.

Теоретическая постоянная датчика: слева — K

Для получения удельной проводимости из измеренной проводимости используется следующая формула:

— удельная проводимость раствора в См/см;

— постоянная датчика в см⁻¹;

— проводимость датчика в сименсах.

Постоянную датчика обычно не рассчитывают по его геометрическим размерам, а измеряют в конкретном измерительном устройстве или в конкретной измерительной установке с использованием раствора с известной проводимостью. Эта измеренная величина и вводится в прибор для измерения удельной проводимости, который автоматически рассчитывает удельную проводимость по измеренным значениям проводимости или сопротивления раствора. В связи с тем, что удельная проводимость зависит от температуры раствора, устройства для ее измерения часто содержат датчик температуры, который измеряет температуру и обеспечивает автоматическую температурную компенсацию измерений, то есть, приведение результатов к стандартной температуре 25°C.

Самый простой способ измерения проводимости — приложить напряжение к двум плоским электродам, погруженным в раствор, и измерить протекающий ток. Этот метод называется потенциометрическим. По закону Ома, проводимость G

является отношением тока
I
к напряжению
U
:

Однако не все так просто, как описано выше — при измерении проводимости имеется много проблем. Если используется постоянный ток, ионы собираются у поверхностей электродов. Также у поверхностей электродов может возникнуть химическая реакция. Это приводит к увеличению поляризационного сопротивления на поверхностях электродов, что, в свою очередь, приводит к получению ошибочных результатов. Если попробовать измерить обычным тестером сопротивление, например, раствора хлористого натрия, будет хорошо видно, как показания на дисплее цифрового прибора довольно быстро изменяются в сторону увеличения сопротивления. Чтобы исключить влияние поляризации, часто используют конструкцию датчика из четырех электродов.

Поляризацию также можно предотвратить или, во всяком случае, уменьшить, если использовать при измерении переменный ток вместо постоянного, да еще и подстраивать частоту в зависимости от проводимости. Низкие частоты используются для измерения низкой удельной проводимости, при которой влияние поляризации невелико. Более высокие частоты используются для измерения высоких проводимостей. Обычно частота подстраивается в процессе измерения автоматически, с учетом полученных значений проводимости раствора. Современные цифровые двухэлектродные измерители проводимости обычно используют переменный ток сложной формы и температурную компенсацию. Они откалиброваны на заводе-изготовителе, однако в процессе эксплуатации часто требуется повторная калибровка, так как постоянная измерительной ячейки (датчика) изменяется со временем. Например, она может измениться при загрязнении датчики или при физико-химических изменениях электродов.

В традиционном двухэлектродном измерителе удельной проводимости (именно такой мы будем использовать в нашем эксперименте) между двумя электродами приложено переменное напряжение и измеряется протекающий между электродами ток. Этот простой метод имеет один недостаток — измеряется не только сопротивление раствора, но и сопротивление, вызванное поляризацией электродов. Для сведения влияния поляризации к минимуму используют четырехэлектродную конструкцию датчика, а также покрытие электродов платиновой чернью.

Удельная электропроводность

СЛ. 10 (0) величина 1/r, обратная удельному сопротивлению, называемая удельной электропроводностью.Обозначается она буквой c(греч. «каппа»), С учетом этого обозначения уравнение (***) примет вид:

(2) Например, удельное сопротивление образца воды при 18°С равно r=2*106ом•см.

Удельная электропроводность этого образца воды будет равна:

Если мы опустим в эту воду два электрода площадью в 1 см2,

то при расстоянии между электродами в 1
см
и разности потенциалов в 1
в
сила тока будет равна 5 • 10-7
а
(при 18° С). Электропроводность растворов электролитов зависит от общего числа их ионов в единице объема раствора. Вследствие этого удельная электропроводность элек­тролитов зависит от концентрации раствора. По мере увеличения кон­центрации электролита удельная электропроводность сначала растет, а затем уменьшается, так как вместе с ростом числа ионов уменьшается ско­рость их перемещения, а также сте­пень диссоциации вещества. Первый фактор действует в растворах сильных электролитов, второй – в растворах сла­бых электролитов. При достижении оп­ределенной концентрации раствора влияние перечисленных факторов ста­новится настолько значительным, что дальнейшее увеличение концентрации приводит к уменьшению электропровод­ности (рис. 2
СЛ. 11).
Удельная электропроводность ра­створов электролитов зависит также от индивидуальных свойств ионов. Де­ло в том, что количество переносимого ионами электрического тока в растворе электролита зависит не только от числа ионов в единице объема, но и от скоро­сти их движения.

Известно, что различные ионы движутся в электрическом поле с неодинаковой скоростью. В табл. 1 СЛ. 12 приведены значения скорости движения некоторых ионов, отнесенные к падению потенциала в 1 в/см

(абсолютные скорости движения ионов).

Таблица 1

Абсолютные скорости ионов (см*сек) в воде при 18°С и разности потенциалов 1 в/см

КатионыСкорость 10-4АнионыСкорость 10-1
H+32,7OH-18,70
Li+3,50Cl-6,85
Na+4,60NO3-6,40
K+6,75I-6,95
NH4+6,70MnO4-5,60

Электропроводность растворов зависит также и от заряда ионов: чем он выше, тем большее коли­чество электричества переносит ион с одного электрода на другой. Так, каждый двухзарядный анион отдает аноду два электрона, а одно­зарядный – только один.

Удельная электропроводность растворов зависит также от темпе­ратуры. Эта зависимость довольно сложная. При повышении темпе­ратуры скорость движения ионов возрастает в связи с уменьшением вязкости среды. Кроме того, изме­нение температуры влияет на степень электролитической диссоциации электролита и тем самым на электропроводность раствора. Повыше­ние температуры на 1°С ведет к ускорению движения ионов, а следо­вательно, к возрастанию электропроводности раствора на 1,5—2,7%.

Что называется электрической проводимостью и в каких единицах она измеряется

Поскольку удельная электропроводность зависит от многих фак­торов, на основе ее изучения не представляется возможным- сделать каких-либо выводов общего характера. Поэтому для удобства учета влияния на электропроводность растворов электролитов их концентра­ции и взаимодействия между ионами Ленцем было введено понятие об эквивалентной электропроводности.

Общая минерализация

Устройства для измерения удельной электрической проводимости часто используют для определения общей минерализации или содержания твёрдых веществ

(англ. total dissolved solids, TDS). Это мера общего количества органических и неорганических веществ, содержащихся в жидкости в различных формах: ионизированной, молекулярной (растворенной), коллоидной и в виде суспензии (нерастворенной). К растворенным веществам относятся любые неорганические соли. Главным образом, это хлориды, бикарбонаты и сульфаты кальция, калия, магния, натрия, а также некоторые органические вещества, растворенные в воде. Чтобы относиться к общей минерализации, вещества должны быть или растворенными, или в форме очень мелких частиц, которые проходят сквозь фильтры с диаметром пор менее 2 микрометров. Вещества, которые постоянно находятся в растворе во взвешенном состоянии, но не могут пройти сквозь такой фильтр, называется
взвешенными твердыми веществами
(англ. total suspended solids, TSS). Общее количество взвешенных веществ обычно измеряется для определения качества воды.

Что называется электрической проводимостью и в каких единицах она измеряется
Галерея фильтрации воды на водоочистных сооружениях им. Р. К. Харриса в Торонто, Онтарио, Канада

Существует два метода измерения содержания твердых веществ: гравиметрический анализ

, являющийся наиболее точным методом, и
измерение удельной проводимости
. Первый метод — самый точный, но требует больших затрат времени и наличия лабораторного оборудования, так как воду нужно выпарить до получения сухого остатка. Обычно это производится при температуре 180°C в лабораторных условиях. После полного испарения остаток взвешивается на точных весах.

Второй метод не такой точный, как гравиметрический анализ. Однако он очень удобен, широко распространен и является наиболее быстрым методом, так как представляет собой простое измерение проводимости и температуры, выполняемое за несколько секунд недорогим измерительным прибором. Метод измерения удельной электропроводности можно использовать в связи с тем, что удельная проводимость воды прямо зависит от количества растворенных в ней ионизированных веществ. Данный метод особенно удобен для контроля качества питьевой воды или оценки общего количества ионов в растворе.

Измеренная проводимость зависит от температуры раствора. То есть, чем выше температура, тем выше проводимость, так как ионы в растворе при повышении температуры движутся быстрее. Для получения измерений, независимых от температуры, используется концепция стандартной (опорной) температуры, к которой приводятся результаты измерения. Опорная температура позволяет сравнить результаты, полученные при разных температурах. Таким образом, измеритель удельной проводимости может измерять реальную проводимость, а затем использовать корректирующую функцию, которая автоматически приведет результат к опорной температуре 20 или 25°C. Если необходима очень высокая точность, образец можно поместить в термостат, затем откалибровать измерительный прибор при той же температуре, которая будет использоваться при измерениях.

Большинство современных измерителей удельной проводимости снабжены встроенным датчиком температуры, который используется как для температурной коррекции, так и для измерения температуры. Самые совершенные приборы способны измерять и отображать измеренные значения в единицах удельной проводимости, удельного сопротивления, солености, общей минерализации и концентрации. Однако еще раз отметим, что все эти приборы измеряют только проводимость (сопротивление) и температуру. Все физические величины, которые показывает дисплей, рассчитываются прибором с учетом измеренной температуры, которая используется для автоматической температурной компенсации и приведения измеренных значений к стандартной температуре.

Удельная электрическая проводимость

Удельная электрическая проводимость раствора электролита ( ) — это проводимость объема раствора, заключенного между двумя параллельными электродами, имеющими площадь по одному квадратному метру и расположенными на расстоянии 1 м друг от друга.

Удельная электрическая проводимость является величиной обратной удельному сопротивлению (ρ

Следовательно, размерность величины удельной электрической проводи- мости =См/м, где См (Сименс) — это обозначение единицы измерения электропроводности.

Удельная электрическая проводимость электролитов определяется количеством и зарядом ионов, переносящих электричество, а также скоростью их движения в электрическом поле.

График зависимости от концентрации раствора для сильных электролитов представ- ляет собой кривую с четко выраженным максимумом, а для слабых — этот максимум в значительной степени размыт и практически не проявляется (рис. 1). В области малых концентраций растворов сильных и слабых электролитов рост электрической проводимости обусловлен увеличением количества ионов — переносчиков электричества.

При увеличении концентрации растет плотность раствора, что снижает скорость движения ионов, при этом у слабых электролитов заметно снижается степень диссоциации, поэтому для слабых электролитов начинает уменьшаться в области значительно более разбавленных растворов и роста электропро- водности практически не наблюдается, а максимум на кривой получается очень пологим.

Повышение температуры на 1 Кувеличивает удельную электропро- водность на 2 — 2,5% за счет понижения вязкости раствора и уплотнения гидратированных ионов, а для растворов слабых электролитов — за счет увеличения степени диссоциации в случае эндотермической реакции растворения электролита.

На величину удельной электрической проводимости, кроме перечисленных факторов, влияет валентность (заряд) иона, так как чем больше заряд иона, тем большее количество электричества он переносит. Так, двухвалентный анион отдает аноду два электрона, в то время как одновалентный — только один. Давление не оказывает заметного влияния на удельную электрическую проводимость. Таким образом, удельная электрическая проводимость зависит от многих факторов, но, как это следует из определения, она не относится к
Рис. 1. Зависимость удельной электрической проводимости сильных и слабых электролитов от концентрации раствораопределенному количеству вещества (концентрация раствора между электродами, находящимися на расстоя-

нии 1 м не оговорена и может быть любой). В связи с этим в электрохимии введено понятие молярной электрической проводимости раствора электролита. В более ранних изданиях учебной литературы этот тип электрической проводимости называется эквивалентной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *