Что называется длиной ненулевого вектора кратко
Что называется длиной ненулевого вектора кратко
Сформулируем ряд базовых определений.
Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или на параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны.
то есть модуль вектора равен корню квадратному из суммы квадратов его координат.
Обозначим углы между вектором и осями координат через α, β, γ соответственно. Косинусы этих углов называются для вектора направляющими, и для них выполняется соотношение: Верность данного равенства можно показать с помощью свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем пункте 4.
Пусть в трехмерном пространстве заданы векторы своими координатами. Имеют место следующие операции над ними: линейные (сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор); не линейные – различные произведения векторов (скалярное, векторное, смешанное).
1. Сложение двух векторов производится покоординатно, то есть если
Геометрически два вектора складываются по двум правилам:
а) правило треугольника – результирующий вектор суммы двух векторов соединяет начало первого из них с концом второго при условии, что начало второго совпадает с концом первого вектора; для суммы векторов – результирующий вектор суммы соединяет начало первого из них с концом последнего вектора-слагаемого при условии, что начало последующего слагаемого совпадает с концом предыдущего;
б) правило параллелограмма (для двух векторов) – параллелограмм строится на векторах-слагаемых как на сторонах, приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой векторов.
Геометрически два вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов является диагональ, соединяющая концы векторов, причем результирующий вектор направлен из конца вычитаемого в конец уменьшаемого вектора.
При λ>0 – вектор сонаправлен ; λ противоположно направлен ; | λ|> 1 – длина вектора увеличивается в λ раз; | λ| 1 – длина вектора уменьшается в λ раз.
4. Пусть в пространстве задана направленная прямая (ось l ), вектор задан координатами конца и начала. Обозначим проекции точек A и B на ось l соответственно через A ’ и B ’.
Рассмотрим некоторые основные свойства проекций:
1) проекция вектора на ось l равна произведению модуля вектора на косинус угла между вектором и осью, то есть ;
2.) проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол – прямой;
3) проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось.
Сформулируем определения и теоремы о произведениях векторов, представляющих нелинейные операции над векторами.
5. Скалярным произведением векторов и называется число (скаляр), равное произведению длин этих векторов на косинус угла φ между ними, то есть
Теорема 2.2. Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения
Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть
Отсюда следует условие перпендикулярности ненулевых векторов и :
С помощью скалярного произведения векторов находят работу постоянной силы на прямолинейном участке пути.
Решение. Вычислим модули векторов и их скалярное произведение по теореме (2.3):
Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых на производство одной тонны творога, заданы в таблице 2.2 (руб.).
Какова общая цена этих ресурсов, затрачиваемых на изготовление одной тонны творога?
Примечание. Действия с векторами, осуществленные в примере 2.10, можно выполнить на персональном компьютере. Для нахождения скалярного произведения векторов в MS Excel используют функцию СУММПРОИЗВ( ), где в качестве аргументов указываются адреса диапазонов элементов матриц, сумму произведений которых необходимо найти. В MathCAD скалярное произведение двух векторов выполняется при помощи соответствующего оператора панели инструментов Matrix
Решение. Находим вектор перемещения, вычитая из координат его конца координаты начала
Угол φ между и находим по формуле (2.29), то есть
– перпендикулярен векторам и ;
– векторы образуют правую тройку (рис. 2.15).
Примечание. Определитель (2.25) раскладывается по свойству 7 определителей
Следствие 1. Необходимым и достаточным условием коллинеарности двух векторов является пропорциональность их соответствующих координат
Следствие 2. Векторные произведения единичных орт равны
Следствие 3. Векторный квадрат любого вектора равен нулю
Также с помощью векторного произведения можно определить момент силы относительно точки и линейную скорость вращения.
— перпендикулярен плоскости, проходящей через точки O , A , B ;
Следовательно, момент силы относительно точки O представляет собой векторное произведение
Решение. Найдем векторное произведение заданных векторов по формуле (2.32).
Теорема 2.6. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения
Теорема 2.7. Если три вектора заданы своими координатами, то их смешанное произведение представляет собой определитель третьего порядка, составленный из координат векторов- сомножителей соответственно, то есть
Объем треугольной пирамиды, построенной на этих же векторах, равен
Решение. Найдем координаты векторов
По формуле (2.36) объем пирамиды, построенной на векторах равен (единиц объема)
Рассмотрим очень важный вопрос о разложении вектора по базису. Приведем следующие определения.
получим выражение вектора через остальные векторы
Линейно независимыми называют векторы, если равенство (2.37) выполняется только тогда, когда все
Базисом n – мерного пространства En называют любую совокупность линейно независимых векторов n – мерного пространства.
Произвольный вектор n – мерного пространства можно представить в виде линейной комбинации векторов базиса таким образом:
Линейное пространство называется конечномерным и имеет размерность n , если в этом пространстве существует система из n линейно независимых векторов (базис) такая, что каждое ее расширение приводит к линейной зависимости системы.
Что называется длиной ненулевого вектора?
Длиной ненулевого вектора АВ (или модулем вектора АВ) называется расстояние от точки А до точки В (или, иными словами, длина отрезка АВ).
Длина ненулевого вектора в декартовой системе координат вычисляется извлечением квадратного корня из суммы квадратов координат этого вектора.
«Геометрия» дословно переводится как «измерение земли». И действительно, в Древней Греции это была чисто прикладная наука. С помощью законов геометрии нарезали участки земли и определяли их площадь.
Смежные углы это 2 угла, сумма которых равна 180°. Смотри рисунок.
При помощи концевой меры длины калибруют микрометры, синусные линейки, калибры, индикаторы. Если нет необходимой длины, их могут набрать из нескольких образцов.
Грибы могут размножаться всеми известными способами: вегетативным, почкованием и даже половым.
Самое важное грибу получить необходимые вещества из почвы с водой. В их сборе и накоплении и участвует мицелий. Более того мицелий постоянно меняет форму, подобно среде, тем самым подстраиваясь под температуру, влажность, например.
Это значит, они друг друга подпитывают минеральными веществами.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №17. Вектор в пространстве
Перечень вопросов, рассматриваемых в теме:
знакомство с правилами действий с векторами в пространстве.
— познакомиться с основными понятиями, используемыми в данной теме;
— сформировать представление о векторных и скалярных величинах;
— научиться выполнять действия с векторами, преобразовывать векторные выражения.
учащиеся научатся различать векторные и скалярные величины, выполнять действия с векторами в пространстве и применять законы действий с векторами для преобразования и упрощения векторных выражений.
Сортировка по категориям скалярных и векторных величин. Отличительные особенности векторных величин. Повторяется определение вектора из курса планиметрии.
Ершова А.П., Голобородько В.В., Крижановский А.Ф. Тетрадь-конспект по геометрии для 10 класса2016. С.88-93.
Теоретический материал для самостоятельного изучения:
2)Два ненулевых вектора называются коллинеарными, если они лежат на одной или на параллельных прямых. Пусть два ненулевых вектора и коллинеарные. Если при этом лучи АВ и СD сонаправлены, то и называются сонаправленными, а если эти лучи не являются сонаправленными, то векторы и называются противоположно направленными.
Нулевой вектор условимся считать сонаправленным с любым вектором. Запись означает, что векторы и сонаправлены, а запись — что векторы с и d противоположно направлены.
3)Векторы называются равными, если они сонаправлены и их длины равны. От любой точки можно отложить вектор, равный данному, и притом только один.
Интерактивная модель «Равные, противоположные, нулевые, сонаправленные, противоположно направленные векторы «.
4)Действия над векторами. Сложение векторов по правилу треугольника.
Для этого нужно от произвольной точки пространства отложить вектор , равный , затем от точки В отложить вектор , равный . Вектор называется суммой и . Для любых трех точек А, В и С имеет место равенство +=
5)Сложение векторов по правилу параллелограмма:
Для этого векторы откладывают от одной точки. Это правило пояснено на рисунке.
Интерактивная модель «Законы действия с векторами».
Сумма нескольких векторов в пространстве находится так же, как и на плоскости и не зависит от порядка слагаемых.
Интерактивная модель «Правило многоугольника».
6)Два ненулевых вектора называются противоположными, если их длины равны и они противоположно направлены.