Что называется дисперсией что называется средней квадратичной погрешностью
Что называется дисперсией что называется средней квадратичной погрешностью
Основной задачей физического эксперимента является измерение численных значений наблюдаемых физических величин.
Измерением называется операция сравнения величины исследуемого объекта с величиной единичного объекта. Так, например, за единицу длины принят метр, и в результате измерения длины некоторого отрезка определяется, сколько метров содержится в этом отрезке.
Напомним, что абсолютной погрешностью приближенного числа называется разность между этим числом и его точным значением, причем ни точное значение, ни абсолютная погрешность принципиально неизвестны и подлежат оценке по результатам измерений.
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу. Если оценка погрешности результата физического измерения не сделана, то можно считать, что измеряемая величина вообще неизвестна, поскольку погрешность может, вообще говоря, быть того же порядка, что и сама измеряемая величина или даже больше. В этом состоит отличие физических измерений от бытовых или технических, в которых в результате практического опыта заранее известно, что выбранный измерительный инструмент обеспечивает приемлемую точность, а влияние случайных факторов на результат измерений пренебрежимо мало по сравнению с ценой деления применяемого прибора.
Погрешности физических измерений принято подразделять на систематические, случайные и грубые. Систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Систематические погрешности скрыты в неточности самого инструмента и неучтенных факторах при разработке метода измерений. Обычно величина систематической погрешности прибора указывается в его техническом паспорте. Что же касается метода измерений, то здесь все зависит от квалификации экспериментатора. Хотя суммарная систематическая погрешность во всех измерениях, проводимых в рамках данного эксперимента, будет приводить всегда либо к увеличению, либо к уменьшению правильного результата, знак этой погрешности неизвестен. Поэтому на эту погрешность нельзя внести поправку, а приходится приписывать эту погрешность окончательному результату измерений.
Случайные погрешности обязаны своим происхождением ряду причин, действие которых неодинаково в каждом опыте и не может быть учтено. Они имеют различные значения даже для измерений, выполненных одинаковым образом, то есть носят случайный характер. Допустим, что сделано n повторных измерений одной и той же величины. Если они выполнены одним и тем же методом, в одинаковых условиях и с одинаковой степенью тщательности, то такие измерения называются равноточными.
(1)
где параметр s определяет ширину распределения. Несколько кривых Гаусса для разных значений параметра s показаны на рис.2.
В дальнейшем будем предполагать, что
1) грубые погрешности исключены;
2) поправки, которые следовало определить (например, смещение нулевого деления шкалы), вычислены и внесены в окончательные результаты;
3) все систематические погрешности известны (с точностью до знака).
Наоборот, если случайная погрешность больше систематической, то именно случайную погрешность нужно уменьшить в первую очередь и добиться того, чтобы случайная погрешность стала меньше систематической, с тем чтобы последняя опять определяла окончательную погрешность результата.
На практике обычно уменьшают случайную погрешность до тех пор, пока она не станет сравнимой по величине с систематической погрешностью. Как будет видно из дальнейшего, случайная погрешность уменьшается при увеличении числа измерений.
Поскольку из-за наличия случайных погрешностей результаты измерений по своей природе представляют собой тоже случайные величины, истинного значения xист измеряемой величины указать нельзя. Однако можно установить некоторый интервал значений измеряемой величины вблизи полученного в результате измерений значения xизм, в котором с определенной вероятностью содержится xист. Тогда результат измерений можно представить в следующем виде:
(2)
Задача наилучшей оценки значения xист и определения пределов интервала (2) по результатам измерений является предметом математической статистики. Воспользуемся некоторыми ее результатами.
Пусть проведено n измерений величины x. Тогда за лучшую оценку истинного значения результата измерений принимается среднее арифметическое значение
(3)
Средней квадратичной погрешностью называется величина
Если число наблюдений очень велико, то подверженная случайным колебаниям величина Sn стремится к постоянному значению σ:
.
Именно этот предел и входит в качестве параметра s в распределение Гаусса (1). Квадрат этой величины называется дисперсией измерений. В действительности, по результатам измерений всегда вычисляется не σ, а ее приближенное значение Sn, которое, вообще говоря, тем ближе к σ , чем больше n.
Это фундаментальный закон возрастания точности при росте числа наблюдений.
Стандартное отклонение
Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.
Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.
Стандартное отклонение обозначается буквой σ (греческая буква сигма).
Стандартное отклонение также называется:
Использование и интерпретация величины среднеквадратического отклонения
Стандартное отклонение используется:
Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.
День 1 | День 2 | День 3 | День 4 | |
---|---|---|---|---|
Пред.А | 19 | 21 | 19 | 21 |
Пред.Б | 15 | 26 | 15 | 24 |
В обеих компаниях среднее количество товара составляет 20 единиц:
Однако, глядя на цифры, можно заметить:
Если рассчитать стандартное отклонение каждой компании, оно покажет, что
Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).
Расчет среднеквадратичного (стандартного) отклонения
Формулы вычисления стандартного отклонения
Разница между формулами S и σ («n» и «n–1»)
Состоит в том, что мы анализируем — всю выборку или только её часть:
Как рассчитать стандартное отклонение?
Пример 1 (с σ)
Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.
День 1 | День 2 | День 3 | День 4 | |
Пред.Б | 15 | 26 | 15 | 24 |
Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:
Применяем эти шаги:
1. Найти среднее арифметическое выборки:
μ = (15 + 26 + 15+ 24) / 4 = 20
2. От каждого значения выборки отнять среднее арифметическое:
3. Каждую полученную разницу возвести в квадрат:
4. Сделать сумму полученных значений:
5. Поделить на размер выборки (т.е. на n):
6. Найти квадратный корень:
Пример 2 (с S)
Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.
У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.
Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.
Яблоня 1 | Яблоня 2 | Яблоня 3 | Яблоня 4 | Яблоня 5 | Яблоня 6 |
9 | 2 | 5 | 4 | 12 | 7 |
Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:
Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.
Применяем практически те же шаги:
1. Найти среднее арифметическое выборки:
Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5
2. От каждого значения выборки отнять среднее арифметическое:
X1 – Xср = 9 – 6,5 = 2,5
X2 – Xср = 2 – 6,5 = –4,5
X3 – Xср = 5 – 6,5 = –1,5
X4 – Xср = 4 – 6,5 = –2,5
X5 – Xср = 12 – 6,5 = 5,5
X6 – Xср = 7 – 6,5 = 0,5
3. Каждую полученную разницу возвести в квадрат:
4. Сделать сумму полученных значений:
Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5
5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):
(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1
6. Найти квадратный корень:
S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193
Дисперсия и стандартное отклонение
Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).
Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:
Ещё расчёт дисперсии можно сделать по этой формуле:
Правило трёх сигм
Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.
Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:
Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.
Стандартное отклонение в excel
Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):
1. Занесите все данные в документ Excel.
2. Выберите поле, в котором вы хотите отобразить результат.
3. Введите в этом поле «=СТАНДОТКЛОНА(«
4. Выделите поля, где находятся данные, потом закройте скобки.
5. Нажмите Ввод (Enter).
В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.
Коэффициент вариации
Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.
Стандартное отклонение делится на среднее и умножается на 100%.
Можно классифицировать вариабельность выборки по коэффициенту вариации:
Среднеквадратическая погрешность
Класс точности СИ
Класс точности— основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.
Погрешность может нормироваться, в частности, по отношению к:
результату измерения (по относительной погрешности);
длине (верхнему пределу) шкалы прибора (по приведенной погрешности).
Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0 — 30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.
Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.
Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.
Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.
Погрешность измерения —отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью.
Доверительным называется интервал, который с заданной надежностью покрывает оцениваемый параметр.
Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Доверительным интервалом параметра распределения случайной величины с уровнем доверия p, порождённым выборкой , называется интервал с границами и , которые являются реализациями случайных величин и , таких, что
.
Граничные точки доверительного интервала и называются доверительными пределами.
Стандартная ошибка среднего в математической статистике — величина, характеризующая стандартное отклонение выборочного среднего, рассчитанное по выборке размера из генеральной совокупности. Термин был впервые введён Удни Юлом в 1897 году. Величина стандартной ошибки зависит от дисперсии генеральной совокупности и объёма выборки .
Стандартная ошибка среднего вычисляется по формуле:
где — величина среднеквадратического отклонения генеральной совокупности, и — объём выборки.
Поскольку дисперсия генеральной совокупности, как правило, неизвестна, то оценка стандартной ошибки вычисляется по формуле:
где — стандартное отклонение случайной величины на основе несмещённой оценки её выборочной дисперсии и — объём выборки.
Пример использования: «средний рост студента первого курса составляет 180 ± 20 см с вероятностью 95 %»
180 см — среднее значение выборки;
95 % — доверительная вероятность (коэффициент надёжности);
160—200 см — доверительный интервал;
20 см — предел погрешности.
Толкование: «с вероятностью 95 % истинное среднее значение генеральной совокупности лежит в интервале 160—200 см»
Для нормального распределения:
где, — среднее значение, z — Z-оценка (зависит от выбранной доверительной вероятности), — среднеквадратическое отклонение, n — размер выборки.
Пределом относительной погрешности называют величину:
Среднеквадратическая погрешность
Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
Средняя квадратическая погрешность среднего арифметического:
По форме представления
Абсолютная погрешность — является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины . Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если — измеренное значение, а — истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
Существует несколько способов записи величины вместе с её абсолютной погрешностью.
Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с.
Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,3806488(13)×10 −23 Дж/К, что также можно записать значительно длиннее как 1,3806488×10 −23 ±0,0000013×10 −23 Дж/К
Относительная погрешность — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):
, .
Относительная погрешность является безразмерной величиной; её численное значение может указываться, например, в процентах.
Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле , где — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:
если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то определяется равным верхнему пределу измерений;
если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.
Приведённая погрешность также является безразмерной величиной.
По причине возникновения
Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.
В технике применяют приборы для измерения лишь с определённой заранее заданной точностью — основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора. В различных областях науки и техники могут подразумеваться различные стандартные (нормальные) условия (например, Национальный институт стандартов и технологий США за нормальную температуру принимает 20 °C, а за нормальное давление — 101,325 кПа); кроме того, для прибора могут быть определены специфические требования (например, нормальное рабочее положение). Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора — например, температурная (вызванная отклонением температуры окружающей среды от нормальной), установочная (обусловленная отклонением положения прибора от нормального рабочего положения), и т. п.
Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)×10n, где показатель степени n = 1; 0; −1; −2 и т. д.
По характеру проявления
Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения, однако их влияние обычно можно устранить статистической обработкой. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.
Математически случайную погрешность, как правило, можно представить белым шумом: как непрерывную случайную величину, симметричную относительно 0, независимо реализующуюся в каждом измерении (некоррелированную по времени).
Основным свойством случайной погрешности является возможность уменьшения искажения искомой величины путем усреднения данных. Уточнение оценки искомой величины при увеличении количества измерений (повторных экспериментов) означает, что среднее случайной погрешности при увеличении объёма данных стремится к 0 (закон больших чисел).
Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (см. Центральная предельная теорема). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.
Однако априорная убежденность в «нормальности» на основании ЦПТ не согласуется с практикой — законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.
Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).
Систематическая погрешность— погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.
Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок, либо «улучшением» эксперимента.
Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).
Надо отметить, что деление погрешностей на случайные и систематические достаточно условно. Например, ошибка округления при определённых условиях может носить характер как случайной, так и систематической ошибки.
По способу измерения
Погрешность прямых измерений вычисляется по формуле
:
— абсолютная погрешность средства измерения (обычно это число, равное половине цены деления измерительного прибора).
Погрешность косвенных воспроизводимых измерений — погрешность вычисляемой (не измеряемой непосредственно) величины. Если , где — непосредственно измеряемые независимые величины, имеющие погрешность , то:
Погрешность косвенных невоспроизводимых измерений вычисляется аналогично вышеизложенной формуле, но вместо ставится значение, полученное в процессе расчётов.