Что называется числовой последовательностью кратко
Алгебра
А Вы уже инвестируете?
Слышали про акцию в подарок?
Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб
План урока:
Понятие числовой последовательности
Попытаемся записать в ряд все четные числа, начиная с двойки:
Ясно, что запись можно продолжать бесконечно. Мы получили некоторый ряд чисел, в данном случае бесконечный. Любой такой ряд называется бесконечной числовой последовательностью
Приведем примеры бесконечных числовых послед-тей:
Заметим, что числа в послед-ти могут повторяться. Так, известно, что число π – это бесконечная десятичная дробь 3,1415926… Выписывая в ряд эти цифры, можно получить послед-ть, в которой будут повторяющиеся числа:
Числа, входящие в состав послед-ти, называют членами послед-ти. Всегда можно указать, какое число является первым членом послед-ти, какое – вторым и т. д. Для их обозначения используются буквы с индексами. Например, есть послед-ть четных чисел 2, 4, 6, 8… Выпишем первые ее члены, обозначая их буквой а:
Получается, что каждому натуральному числу n соответствует какой-то единственный член послед-ти, который обозначается как аn. То есть послед-ть задает некое правило, с помощью которого для каждого числа n можно вычислить число an. Отсюда можно сформулировать более сложное определение бесконечной числовой послед-ти – это функция, областью определения которой является множество натуральных чисел.
Способы задания последовательностей
Чтобы задать послед-ть, необходимо указать способ, с помощью которого можно вычислить любой ее член. Проще всего это сделать, записав формулу, в которой в качестве переменной использует номер члена послед-ти n.Такая формула называется формулой n-ого члена последовательности.
Пример. Послед-ть задается формулой аn = 3n. Выпишите первые пять членов этой послед-ти.
Решение. Чтобы найти первый член послед-ти, то есть а1, просто подставим в формулу единицу:
Аналогично можно вычислить и следующие четыре члена послед-ти:
Итак, послед-ть имеет вид:
Пример:Запишите формулу n-ого члена для послед-ти
состоящей из положительных нечетных чисел.
Решение. Каждое нечетное число можно представить в виде 2n– 1. Тогда получаем:
Получаются как раз члены послед-ти, указанной в условии. Поэтому формула n-ого члена будет выглядеть как аn = 2n– 1.
Стоит обратить внимание, что для вычисления n-ого члена послед-ти НЕ нужно вычислять все предшествующие члены.
Пример. Запишите 38-й член послед-ти, заданной формулой аn = 2n 2 + 1.
Решение. Подставим n = 38 в формулу и получим:
Теперь рассмотрим послед-ть, в которой первые два числа равны единице, а каждый следующий член равен сумме двух предыдущих. Она называется последовательностью Фибоначчи и начинается так:
Действительно, по условию, первые два члена – это единица:
а каждый следующий равен сумме предыдущих:
Формулу n-ого члена записать для послед-ти Фибоначчи очень сложно (хотя и возможно). Вместо этого здесь удобнее использовать рекуррентный способ задания последовательности. Записываются первые несколько членов послед-ти, а после дается формула (ее называют рекуррентной), которая позволяет вычислить следующие члены по предыдущим:
При использовании рекуррентного способа для вычисления n-ого члена обычно необходимо вычислить все предыдущие члены послед-ти.
Пример. Найдите пятый член послед-ти, заданной рекуррентной формулой аn= 3•аn–1– 1, если а1 = 2.
Решение. Будем последовательно вычислять все члены послед-ти, вплоть до пятого:
Надо понимать, что одну и ту же послед-ть можно задать по-разному. Так, послед-ть четных чисел можно задать формулой n-ого члена аn = 2n, так и рекуррентной формулой аn = an–1 + 2, если а1 = 1.
Решение. Сначала вычислим первый член послед-ти:
Чтобы записать рекуррентную формулу, попытаемся найти разницу между членами, имеющими номера n и (n– 1):
Итак, получили равенство
Перенесем в нем слагаемое (– an– 1) вправо и получим рекуррентную формулу:
Наконец, некоторые послед-тине получается задать ни формулой n-ого члена, ни рекуррентным способом. Их можно только описать. Таковой является, например, послед-ть простых чисел:
Мы не будем это доказывать, однако не существует такой формулы, которая позволяла бы вычислить n-ое простое число либо по самому числу n, либо по предыдущим простым числам. Действительно, для построения такой послед-ти используют особый алгоритм, известный как решето Эратосфена. Если бы существовала формула n-ого члена, то потребность в использовании решета Эратосфена отпала бы.
Возрастающие и убывающие последовательности
Рассмотрим послед-ть, заданную формулой аn = 5n:
Очевидно, что каждый следующий член больше предыдущего. Это значит, что мы имеем дело с возрастающей последовательностью.
Теперь изучим послед-ть, заданной рекурсивным способом:
Выглядеть он будет так:
Ясно, что каждый следующий член послед-ти меньше предыдущего. Такой ряд чисел называется убывающей последовательностью.
Убывающие и возрастающие послед-ти называют также монотонными последовательностями.
Для того, чтобы определить характер послед-ти, достаточно найти разность членов аnи аn+1. Если получается положительное выражение, то послед-ть возрастает, а если выражение отрицательно, то послед-ть убывает. Если получилось выражение, которое может иметь различный знак, то послед-ть вовсе не является монотонной.
Пример. Послед-ть задана формулой an = n/(n + 1). Является ли она убывающей либо возрастающей?
Решение. Запишем выражения для вычисления n-ого и (n+ 1)-ого члена послед-ти:
Осталось найти их разницу:
При натуральных значениях n полученная разница является положительным числом. Это значит, что каждый следующий член больше предыдущего, то есть послед-ть является возрастающей.
Пример. Исследуйте на монотонность послед-ть, заданную формулой
Решение. Если выписать первые члены послед-ти, может показаться, что она – убывающая:
Но это не так. Запишем выражения для n-ого и (n + 1)-ого члена послед-ти:
Теперь найдем их разность:
Получили выражение (2n– 7), которое может быть как отрицательным, так и положительным (при n≥ 4). Это значит, что послед-ть немонотонна. В этом можно убедиться, вычислив четвертый и пятый член послед-ти:
Получаем, что у5>у4, поэтому послед-ть не является убывающей
Ответ: послед-ть немонотонна.
Ограниченные и неограниченные последовательности
Изучим послед-ть, заданную с помощью формулы bn = 1/n. Её первые члены будут выглядеть так:
Очевидно, что она является убывающей, ведь каждая следующая дробь меньше предыдущей. Вместе с тем все члены послед-ти являются положительными числами. Это значит, что для каждого n выполняется неравенство bn> 0. То есть последовательность ограничена числом 0. В математике такие послед-ти называют ограниченными снизу.
Существует и послед-ти, ограниченные сверху. Это такие послед-ти, каждый член которых меньше какого-то постоянного числа.
В качестве примера можно привести послед-ть, заданную формулой сn = 1 – 1/n. Каждый следующий ее член все ближе к единице, но ни один из них не достигает ее. Покажем, как строго доказать это. Для этого используют метод рассуждений «от противного».
Предположим, что послед-ть сn = 1 – 1/n не ограничена числом 1 сверху. Тогда существует такой ее член сn, для которого выполняется условие
Попытаемся найти номер этого члена:
Полученное нер-во выполняется только для отрицательных n. Но n – это натуральное, то есть положительное число. Это говорит о том, что не существует такого натурального n, для которого справедливо нер-во 0 ≥ 1/n. Значит, и не существует такого сn, для которого верно нер-во сn ≥ 1. Из этого следует, что послед-ть ограничена сверху числом 1.
Пример. Докажите, что послед-ть mn = n 2 – 6n + 4 ограничена снизу числом (– 6).
Решение. Предположим, что на самом деле послед-ть не ограничена снизу числом (– 6). Тогда хотя бы для одного ее члена будет выполняться нер-во
Найдем номер этого члена:
Получили неравенство второй степени. Для его решения следует найти корни квадратного трехчлена. Начнем с вычисления дискриминанта:
Дискриминант отрицательный, а ветви параболы смотрят вверх. Поэтому схематично парабола относительно оси Ох будет располагаться так:
Видно, что нер-во решений не имеет. Значит, не существует такого номера n, для которого верно условие mn ≤ – 6. Следовательно, послед-ть ограничена снизу числом (– 6).
Если послед-ть ограничена одновременно и снизу, и сверху, то ее называют просто ограниченной послед-тью.
Примером ограниченной последовательности является bn = 1/n. С одной стороны, она ограничена нулем снизу. С другой стороны, она ограничена сверху числом 2, так как первый ее член равен единице, а вся послед-ть – убывающая.
Примером неограниченной последовательности является vn = 5n, ведь ее невозможно ограничить сверху.
Примером ограниченной последовательности является bn = 1/n. С одной стороны, она ограничена нулем снизу. С другой стороны, она ограничена сверху числом 2, так как первый ее член равен единице, а вся послед-ть – убывающая.
Примером неограниченной последовательности является vn = 5n, ведь ее невозможно ограничить сверху.
Видно, что формула работает. Однако, сколько бы раз мы не проверяли ее, это не будет служить строгим доказательством ее справедливости. Возможно, что она будет работать для первого миллиона члена послед-ти, а для 1000001-ого даст ошибку. Поэтому поступим иначе. Предположим, что фор-ла Sn= n 2 верна хотя бы для одного значения n, равного k:
Докажем, что тогда она будет верна и для следующего числа k + 1. То есть нужно доказать равенство
Ясно, что сумму (k + 1) членов послед-ти можно получить, прибавив к сумме k членов (то есть к Sk )ещё одно слагаемое an+1, то есть справедлива запись:
При этом мы предположили, что верно равенство
а число an+1 можно посчитать по формуле n-ого члена:
Тогда можно записать
Получили формулу сокращенного умножения – квадрат суммы. Его можно «свернуть»:
Сформулируем принцип математической индукции:
То есть сначала надо доказать, что утверждение выполняется при n = 1. Это действие называют шагом индукции. Далее предполагают, что утверждение верно при n = k, и из этого выводят, что оно верно и для n =k + 1.
Пример. Докажите с помощью математической индукции, что сумма квадратов первых n натуральных чисел вычисляется по формуле:
Решение. Докажем базис индукции, то есть то, что утверждение верно при n = 1. Действительно, подставив единицу в формулу, получим:
Получили один и тот же результат. Базис индукции доказан.
Теперь предположим, что формула верна для произвольного n = k:
Тогда сумма (k + 1) квадратов может быть найдена по формуле
Подставим в нее выражение для Sk и получим:
С другой стороны, нам надо доказать, что величина Sk+1определяется по формуле
Приравняем выражения (1) и (2) и покажем, что они тождественно равны:
Умножим обе части на 6 и получим:
Получили одинаковые выражения в обоих частях рав-ва, поэтому оно является верным при любом значении k. Значит, мы смогли доказать шаг индукции, и следовательно, всё исходное утверждение.
Пример. Докажите, что любую сумму, большую 7 копеек, можно оплатить, используя только два типа монет: по 3 и 5 копеек.
Это утверждение, очевидно, верно сумм в 8, 9 и 10 копеек:
Добавив к этим суммам ещё одну трехкопеечную монету, мы сможем получить выражения для следующих трех чисел:
С помощью ещё одной монетки в три копейки можно уплатить следующие 3 суммы:
Ясно, что продолжая подобные рассуждения, можно для любого натурального числа записать эквивалентную ему сумму пятерок и троек, что доказывает утверждение из условия.
Последовательности в жизни
Порою, изучая математические объекты, люди задумываются – а какое отношение все эти формулы имеют к реальной жизни? Встречаются ли последовательности в природе и обществе, или они являются лишь плодом фантазии математиков?
На самом деле последовательности имеют большое практическое приложение. Так, Фибоначчи сформулировал свою последовательность тогда, когда изучал скорость размножения кроликов. Если каждая пара кроликов рожает в месяц ещё одну пару, а через месяц и старая, и новая пара рожает ещё кроликов, то их численность будет расти также, как и последовательность Фибоначчи! Аналогично протекают процессы роста популяций других животных.
Большое значение последовательности имеют в программировании. Дело в том, что порою программам нужно получить некоторое случайное число, чтобы имитировать случайные события. Однако по ряду причин компьютеру тяжело сгенерировать истинно случайное число, поэтому часто используют генераторы псевдослучайных чисел. Это особые алгоритмы, порождающие последовательности чисел, которые кажутся случайными, хотя таковыми на самом деле не являются.
Встречаются последовательности и в астрономии. В частности, расстояние от планет до Солнца примерно можно рассчитать с помощью особой последовательности Тициуса-Боде. Последние исследования показывают, что и расположение планет в других планетных системах хорошо описывается этой последовательностью.
Числовая последовательность
Числовой последовательностью называют ряд чисел, полученных по некоторому правилу или формуле.
Например, правило «все положительные четные числа по возрастанию начиная с двойки» задает последовательность: \(2; 4; 6; 8; 10. \) А правило «первое число равно \(3\), а каждое следующее число в два раза больше предыдущего» формирует последовательность: \(3; 6; 12; 24; 48. \)
Ниже разобраны несколько разных способов задания числовых последовательностей.
Числа, образующие последовательность, называются ее членами (или элементами). И каждое из этих чисел имеет свой порядковый номер.
Например, в последовательности \(3; 6; 12; 24; 48…\) тройка является первым членом (порядковый номер – один), шестерка – вторым (ее номер по порядку равен двум), двенадцать – третьим и т.д.
В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
То есть, если последовательность \(3; 6; 12; 24; 48…\) обозначить как \(a_n\), то можно записать, что \(a_1=3\), \(a_2=6\), \(a_3=12\), \(a_4=24\) и так далее.
порядковый номер элемента
Способы задания числовых последовательностей
Все способы формирования числовых последовательностей можно разделить на три большие группы:
— I способ: словесный. Здесь все просто – в буквальном смысле словами описывается каким образом можно вычислить элементы искомой последовательности.
Отметим, что последовательности в начале статьи заданы именно словесным способом.
— II способ: аналитический (формулой энного члена). Тут значение каждого элемента последовательности вычисляется по некоторой формуле, в которую подставляется порядковый номер этого элемента.
Пример: Последовательность задана формулой: \(b_n=\frac
Обратите внимание, что при таком задании последовательности, значение каждого элемента зависит только от его порядкового номера. И поэтому, если нам нужно вычислить, например, пятнадцатый элемент, мы можем это сделать сразу, не вычисляя предыдущие четырнадцать.
Пример: Последовательность задана формулой: \(a_n=8+5n-n^2\). Вычислите \(a_9\).
Решение: Нужно вычислить значение девятого элемента, то есть порядковый номер \(n=9\). Подставляем в формулу: \(a_9=8+5·9-9^2=8+45-81=-28\).
III способ: рекуррентное соотношение. Звучит страшно, но суть проста – здесь дается начало последовательности (один или несколько первых элементов) и правило, по которому из предыдущего (или нескольких предыдущих) членов последовательности можно вычислить следующий.
Пример: Последовательность задана условиями: \(c_1=4\), \(c_
Решение: Первый член нам известен: \(c_1=4\).
Второй мы получим, подставив в формулу вместо \(n\) единицу: \(c_<1+1>=c_1+3\)
\(c_2=c_1+3=4+3=7\)
Третий (\(n=2\)): \(c_<2+1>=c_2+3 \)
\(c_3=c_2+3=7+3=10\).
Нужные пять элементов вычислены. Теперь можно записывать ответ.
В этом примере мы по сути получали следующий элемент из предыдущего путем прибавления к предыдущему тройки. Логично, ведь формула \(c_
На практике могут встречаться более сложные формулы, в которых следующий элемент вычисляется из двух, трех или даже большего количества предыдущих.
Пример: У последовательности известны первые два элемента \(z_1=2;\) \(z_2=5\). Так же известна формула следующего элемента \(z_
Решение: Слева будем писать текущую последовательность, а справа вести вычисления очередного элемента.
Последовательность на данный момент:
Так как формула дана для элемента с номером \(n+2\), то чтобы найти \(z_3\) нужно подставлять вместо \(n\) единицу:
\(z_<1+2>=3z_<1+1>-z_1\)
\(z_3=3z_2-z_1=3·5-2=13\)
\(z_1\) | \(z_2\) | \(z_3\) | \(z_4\) | \(z_5\) | \(. \) |
\(2\) | \(5\) | \(13\) | ? | ? | \(. \) |
\(z_<2+2>=3z_<2+1>-z_2\)
\(z_4=3z_3-z_2=3·13-5=34\)
\(z_1\) | \(z_2\) | \(z_3\) | \(z_4\) | \(z_5\) | \(. \) |
\(2\) | \(5\) | \(13\) | \(34\) | ? | \(. \) |
\(z_<3+2>=3z_<3+1>-z_3\)
\(z_5=3z_4-z_3=3·34-13=89\)
\(z_1\) | \(z_2\) | \(z_3\) | \(z_4\) | \(z_5\) | \(. \) |
\(2\) | \(5\) | \(13\) | \(34\) | \(89\) | \(. \) |
Важное отличие рекуррентного способа задания последовательности от аналитического – при рекуррентном мы не можем посчитать следующий элемент, не зная предыдущих. То есть, если нам нужно вычислить, например, пятнадцатый элемент, придется сначала вычислить все, что идут до него.
Как определить является ли число элементом последовательности?
Во всех предыдущих примерах мы находили значения элементов последовательности – чему равен третий, пятый или девятый член. Иначе говоря, выясняли какое именно число стоит в последовательности на таком-то месте.
Но в практике встречается также обратная задача – значение известно и надо выяснить, есть ли оно среди элементов некоторой последовательности? А если есть, то на каком месте?
Пример (ОГЭ): Какое из чисел ниже есть среди членов последовательности \(a_n=n^2-n\):
Решение: Из условия задачи понятно, что одно из этих чисел точно является элементом последовательности. Поэтому мы можем просто вычислять элементы по очереди, пока не найдем нужный:
\(a_2=2^2-2=2\) – тоже не то.
Нужный элемент найден.
Такой метод решения годится только если заранее известно, что элемент точно в последовательности есть. Потому что если его вдруг там нет – это можно проверять вечность, последовательность ведь бесконечна!
Поэтому в такой ситуации пользуются следующим алгоритмом:
Если число \(3\) – член последовательности, то значит при некотором значении \(n\), формула \(\frac<51+2n>
Подставляем тройку вместо \(a_n\).
ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ
ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ – функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.
Например, для функции y = n 2 можно записать:
Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.
1. Последовательность задана аналитически, если задана формула ее n-го члена:
Пример. yn= 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …
2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.
Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….
Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.
3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.
Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.
Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n-е число Фибоначчи выражается через его порядковый номер следующей формулой .
На первый взгляд, формула для n-го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n.
Свойства числовых последовательностей.
Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.
Определение. Последовательность <yn> называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:
Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.
Пример 1. y1 = 1; yn = n 2 – возрастающая последовательность.
Пример 2. y1 = 1; – убывающая последовательность.
Пример 3. y1 = 1; – эта последовательность не является не возрастающей не убывающей.
Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T. Число T называется длиной периода.
Пример. Последовательность периодична с длиной периода T = 2.
Арифметическая прогрессия.
Числовую последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.
Таким образом, арифметическая прогрессия – это числовая последовательность <an>, заданная рекуррентно соотношениями
Пример. 1, 3, 5, 7, 9, 11, … – возрастающая арифметическая прогрессия, у которой a1 = 1, d = 2.
Пример. 20, 17, 14, 11, 8, 5, 2, –1, –4,… – убывающая арифметическая прогрессия, у которой a1 = 20, d = –3.
Нетрудно найти явное (формульное) выражение anчерез n. Величина очередного элемента возрастает на d по сравнению с предыдущим, таким образом, величина n элемента возрастет на величину (n – 1)d по сравнению с первым членом арифметической прогрессии, т.е.
Это формула n-го члена арифметической прогрессии.
Используя явное выражение anчерез n, можно доказать следующее свойство арифметической прогрессии: если натуральные числа i, j, k, l таковы, что i + j = k + l, то ai + aj= ak + al. Чтобы в этом убедиться, достаточно подставить i, j, k и l вместо n в формулу n-го члена арифметической прогрессии и сложить. Отсюда следует, что если рассматривать первые n членов арифметической прогрессии, то суммы членов, равно отстоящих от концов, будут одинаковы:
Последнее равенство позволяет вычислить сумму первых n членов арифметической прогрессии:
С этой целью берется еще одна такая же сумма, но слагаемые записывается в обратном порядке:
Далее она складывается почленно с исходной суммой, причем слагаемые сразу попарно группируются. В результате
откуда . Это формула суммы n членов арифметической прогрессии.
Арифметической прогрессия названа потому, что в ней каждый член, кроме первого, равен среднему арифметическому двух соседних с ним – предыдущего и последующего. Действительно, так как
Сложение двух последних равенств дает .
Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.
Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?
Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению
Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.
Геометрическая прогрессия.
Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q, называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.
Таким образом, геометрическая прогрессия – это числовая последовательность <bn>, заданная рекуррентно соотношениями
Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.
Пример 2. 2, –2, 2, –2, … – геометрическая прогрессия b = 2, q = –1.
Пример 3. 8, 8, 8, 8, … – геометрическая прогрессия b = 8, q = 1.
Формула n-го члена геометрической прогрессии имеет вид
Можно получить формулу суммы членов конечной геометрической прогрессии.
Пусть дана конечная геометрическая прогрессия
пусть Sn – сумма ее членов, т.е.
Принимается, что q № 1. Для определения Snприменяется искусственный прием: выполняются некоторые геометрические преобразования выражения Snq.
Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.
При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае Sn = a1n.
Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как
следовательно, bn2= bn–1 bn+1 и верна следующая теорема (характеристическое свойство геометрической прогрессии):
числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.
Предел последовательности.
Пусть есть последовательность <cn> = <1>n>. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число , или . С ростом n все члены геометрической прогрессии убывают и их значение приближается к нулю. В этом случае принято говорить, что при n, стремящемся к бесконечности, данная последовательность сходится и нуль есть ее предел. Записывается это так:
Строгое определение предела формулируется следующим образом: