Что называется четной функцией

Четная функция

Что называется четной функцией

Что называется четной функцией

Что называется четной функцией

Что называется четной функцией

Нечётная фу́нкция — функция, меняющая знак при изменении знака независимого переменного.

Чётная фу́нкция — это функция, не изменяющая своего значения при изменении знака независимого переменного.

Нечётная фу́нкция — функция, симметричная относительно центра координат, а чётная — функция, симметричная относительно оси ординат.

Содержание

Определения

Свойства

Примеры

Нечётные функции

Чётные функции

Вариации и обобщения

Полезное

Смотреть что такое «Четная функция» в других словарях:

ЧЕТНАЯ ФУНКЦИЯ — функция, удовлетворяющая равенству f( x) = f(x) при всех x … Большой Энциклопедический словарь

ЧЕТНАЯ ФУНКЦИЯ — функция, не меняющая знак при изменении знака независимого переменного, т. е. функция, удовлетворяющая условию f( x)=f(x). График Ч. ф. симметричен относительно оси ординат … Математическая энциклопедия

ЧЕТНАЯ ФУНКЦИЯ — функция, удовлетворяющая равенству f( x) = f(x) при всех х … Естествознание. Энциклопедический словарь

чётная функция — функция, удовлетворяющая равенству f( х) = f(х) при всех х. * * * ЧЕТНАЯ ФУНКЦИЯ ЧЕТНАЯ ФУНКЦИЯ, функция, удовлетворяющая равенству f( x) = f(x) при всех x … Энциклопедический словарь

Многочлены Лежандра — Многочлен Лежандра многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов… … Википедия

Спектральная плотность — В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье. Если процесс имеет… … Википедия

ЛЮКСЕМБУРГА НОРМА — функция где М(и) четная выпуклая функция, возрастающая при положительных U, М(u)>0 при u>0, G ограниченное замкнутое множество в Свойства этой нормы были изучены В. Люксембургом [1]. Л. н. эквивалентна норме Ор лича (см. Орлича… … Математическая энциклопедия

ВЕИЕРШТРАССА ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ — ф>тнкции, положенные К. Вейерштрассом в основу его общей теории эллиптических функций, излагавшейся им с 1862 на лекциях в Берлинском университете (см. [1], [2]). В отличие от более раннего построения теории эллиптич. функций, связанного с… … Математическая энциклопедия

Источник

Четные и нечетные функции

Функция называется четной, если ее область определения симметрична относительно нуля и для любого x из ее области определения выполняется равенство

График четной функции симметричен относительно оси ординат.

Например, — четные функции.

Что называется четной функцией

Функция называется нечетной, если ее область определения симметрична относительно нуля и для любого x из ее области определения выполняется равенство

График нечетной функции симметричен относительно начала координат.

Например, — нечетные функции.

Что называется четной функцией

Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида.

Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задания:

1. Проверьте, является ли функция четной (нечетной).

Область определения функции

Проверим, является ли чётной или нечётной. Если функция четна. Если функция нечетна.

— значит, функция нечётная, её график симметричен относительно нуля.

2. Проверьте, является ли функция четной (нечетной)

Область определения: все действительные числа.

— чётная, как сумма двух чётных функций.

Её график симметричен относительно оси y.

3. Проверьте, является ли функция четной (нечетной).

Область определения функции симметрична относительно нуля.

— чётная, её график симметричен относительно оси y.

Источник

Четные и нечетные функции

Вы будете перенаправлены на Автор24

Четные функции

Так как при выборе равных по модулю с обоими знаками значений независимых переменных для любой четной функции значения самой функции будет совпадать, то график этих функции будет подчиняться закону осевой симметрии по отношению к оси ординат (рис. 1).

Что называется четной функцией

Нечетные функции

Так как при выборе равных по модулю с обоими знаками значений независимых переменных для любой четной функции значения самой функции будут также совпадать по модулю и отрицательны по знакам, то график этих функции будет подчиняться закону центральной симметрии по отношению к началу координат (рис. 2).

Что называется четной функцией

Готовые работы на аналогичную тему

Функция общего вида

Функция общего вида никогда не будет симметрична оси ординат и началу координат. Пример функции общего вида изображен на рисунке 3.

Что называется четной функцией

Пример задачи

Исследовать функцию на четность и нечетность и построить их графики.

Изобразим её на графике:

Что называется четной функцией

Изобразим её на графике:

Что называется четной функцией

Изобразим её на графике:

Что называется четной функцией

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 04 07 2021

Источник

Четные и нечетные функции

Что называется четной функцией

Что называется четной функцией

Что называется четной функцией

Что называется четной функцией

Нечётная фу́нкция — функция, меняющая знак при изменении знака независимого переменного.

Чётная фу́нкция — это функция, не изменяющая своего значения при изменении знака независимого переменного.

Нечётная фу́нкция — функция, симметричная относительно центра координат, а чётная — функция, симметричная относительно оси ординат.

Содержание

Определения

Свойства

Примеры

Нечётные функции

Чётные функции

Вариации и обобщения

Полезное

Смотреть что такое «Четные и нечетные функции» в других словарях:

Нечетные и четные функции — f(x) = x пример нечётной функции. f(x) = x2 пример чётной функции. f(x) = x3 … Википедия

Земляков — Земляков, Александр Николаевич Файл:Zemlyakov.jpg Александр Николаевич Земляков (17 апреля 1950(19500417), Бологое 1 января 2005, Черноголовка) математик,выдающийся советский и российский педагог, автор учебно педагогической… … Википедия

Земляков, Александр Николаевич — Александр Николаевич Земляков (17 апреля 1950(19500417), Бологое 1 января 2005, Черноголовка) математик, выдающийся советский и российский педагог, автор учебно педагогической литературы. Биография Закончил в 1967 году с золотой… … Википедия

Ряд Фурье — Добавление членов ряда Фурье … Википедия

H.265 — или HEVC (англ. High Efficiency Video Coding высокоэффективное видеокодирование) предполагаемая будущая рекомендация ITU T и проект стандарта ISO/IEC по сжатию видео с применением более эффективных алгоритмов по сравнению с H.264/MPEG… … Википедия

МАРЦИАН КАПЕЛЛА — МАРЦИАН КАПЕЛЛА (Martianus Minneius Felix Capeila) (2 я пол. 5 в. н. э.), латинский платоник, последний латинский выразитель «религии культуры» спасения через пайдейю. Известен как автор сочинения «О браке Филологии и Меркурия» (De nuptiis… … Античная философия

Link 16 — (TADIL J) тип военной тактической сети обмена данных, близкому к реальному. Используется США и странами НАТО. Является одной из составных частей семейства тактических сетей передачи данных TADIL (англ. Tactical Digital Information Link … Википедия

ЛАНДАУ ТЕОРЕМЫ — теоремы для регулярных в круге функций, устанавливающие нек рые связи между геометрич. свойствами производимого этими функциями конформного отображения и начальными коэффициентами представляющих их степенных рядов. В 1904 Э. Ландау показал [1],… … Математическая энциклопедия

Источник

Четность и нечетность функции. Период функции. Экстремумы функции

Содержание

Способы задания функции

x−2−10123
y−4−3−2−101

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Четная и нечетная функция

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

Значит, функция f(x)=3x^<3>-7x^ <7>является нечетной.

Периодическая функция

Что называется четной функцией

f(x) > 0 на (x_<1>; x_<2>) \cup (x_<3>; +\infty )

Что называется четной функцией

f(x) на (-\infty; x_ <1>) \cup (x_<2>; x_ <3>)

Что называется четной функцией

Ограниченность функции

Возрастающая и убывающая функция

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x

Что называется четной функцией

б) Когда при x > 0 четная функция убывает, то возрастает она при x

Что называется четной функцией

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x

Что называется четной функцией

Что называется четной функцией

Экстремумы функции

Необходимое условие

Достаточное условие

Наибольшее и наименьшее значение функции на промежутке

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *