Что написано на rust

Rust — молодой и дерзкий язык программирования

Говорят, что это одновременно C++ и Haskell.

Первая версия языка Rust появилась в 2010 году, и он сразу занял третью строчку в списке любимых языков разработчиков на StackOverflow. Год спустя Rust возглавил этот список и держался там несколько лет. Давайте посмотрим, почему этот язык стал таким популярным, в чём его особенности и почему вокруг него много споров.

В чём идея языка Rust

Автору языка нравилась скорость работы и всемогущество языка C++ и надёжность Haskell. Он поставил перед собой задачу совместить оба этих подхода в одном языке, и за несколько лет он собрал первую версию языка Rust.

Rust позиционируется как компилируемый системный мультипарадигмальный язык высокого уровня. Сейчас поясним, что это значит.

👉 Компилируемый язык означает, что готовая программа — это отдельный файл, который можно запустить на любом компьютере с нужной операционной системой. Для запуска не нужно устанавливать среду разработки и компилятор, достаточно, чтобы скомпилированная версия подходила к вашему компьютеру.

👉 Системный — это когда на языке пишут программы для работы системы в целом. Это могут быть операционные системы, драйверы и служебные утилиты. Обычные программы тоже можно писать на Rust — от калькулятора до системы управления базами данных. Системный язык позволяет писать очень быстрые программы, которые используют все возможности железа.

👉 Мультипарадигмальный значит, что в языке сочетаются несколько парадигм программирования. В случае Rust это ООП, процедурное и функциональное программирование. Причём, ООП в Rust пришло из C++, а функциональное — из Haskell. Программист может сам выбирать, в каком стиле он будет писать код, или совмещать разные подходы в разных элементах программы.

Синтаксис и код

За основу синтаксиса в Rust взят синтаксис из C и C++.Например, классический «Привет, мир!» на Rust выглядит так:

fn main() <
println!(«Hello, world!»);
>

Если вы знакомы с подобным синтаксисом, то сможете быстро начать писать и на Rust. Другое дело, что в Rust есть свои особенности:

let x = if new_game() < 4 >
else if reload() < 3 >
else

Последнее разберём подробно. При такой записи переменная x будет равна четырём, если функция new_game() вернёт значение true. Если этого не случится, компилятор вызовет функцию reload() и проверит, что получилось. Если true, то x примет значение 3, а если и это не сработает — то x станет равным 0.

Ещё в Rust есть сравнение переменной с образцом. В зависимости от того, с каким образцом совпало значение переменной, выполнится та или иная функция:

Главная особенность программ на Rust

Несмотря на синтаксис, похожий на C, главную особенность программ на Rust разработчики взяли из Haskell, и звучит она так:

Если программа на Rust скомпилировалась и не упала во время запуска, то она будет работать до тех пор, пока вы сами её не остановите.

Это значит, что программы на Rust почти так же надёжны, как программы на Haskell. Почти — потому что если программист использует «небезопасный» блок unsafe, который даёт ему прямой доступ к памяти, то в теории это иногда может привести к сбоям. Но даже с такими блоками Rust старается справляться сам и падает только в безнадёжных случаях.

Плюсы и минусы языка

Когда язык совмещает в себе несколько разных подходов из других языков, он получает большинство преимуществ каждого из них:

Минусы в основном связаны со скоростью развития языка. Так как Rust развивается очень быстро, то часто бывает так, что код из старой версии не работает в новой версии. Ещё к минусам можно добавить:

Что написано на Rust

Чаще всего Rust используют в тех проектах, где нужна стабильность и надёжность при высокой нагрузке и общее быстродействие программы.

На практике Rust подходит для разработки ОС, веб-серверов, системных программ мониторинга, веб-движков, а также для создания масштабируемых частей фронтенда и бэкенда. Например, вот самые известные проекты, где Rust был основным языком программирования:

Источник

Обзор языка программирования Rust

Rust — новый экспериментальный язык программирования, разрабатываемый Mozilla. Язык компилируемый и мультипарадигмальный, позиционируется как альтернатива С/С++, что уже само по себе интересно, так как даже претендентов на конкуренцию не так уж и много. Можно вспомнить D Вальтера Брайта или Go от Google.
В Rust поддерживаются функицональное, параллельное, процедурное и объектно-ориентированное программирование, т.е. почти весь спектр реально используемых в прикладном программировании парадигм.

Я не ставлю целью перевести документацию (к тому же она весьма скудная и постоянно изменяется, т.к. официального релиза языка еще не было), вместо этого хочется осветить наиболее интересные фичи языка. Информация собрана как из официальной документации, так и из крайне немногочисленных упоминаний языка на просторах Интернета.

Первое впечатление

Синтаксис языка строится в традиционном си-подобном стиле (что не может не радовать, так как это уже стандарт де-факто). Естественно, всем известные ошибки дизайна С/С++ учтены.
Традиционный Hello World выглядит так:

Пример чуть посложнее — функция расчета факториала:

Как видно из примера, функции объявляются в «функциональном» стиле (такой стиль имеет некоторые преимущества перед традиционным «int fac(int n)»). Видим автоматический вывод типов (ключевое слово let), отсутствие круглых скобок у аргумента while (аналогично Go). Еще сразу бросается в глаза компактность ключевых слов. Создатели Rust дейтсвительно целенаправленно сделали все ключевые слова как можно более короткими, и, скажу честно, мне это нравится.

Мелкие, но интересные синтаксические особенности

Типы данных

Rust, подобно Go, поддерживает структурную типизацию (хотя, по утверждению авторов, языки развивались независимо, так что это влияние их общих предшественников — Alef, Limbo и т.д.). Что такое структурная типизация? Например, у вас в каком-то файле объявлена структура (или, в терминологии Rust, «запись»)
type point = ;
Вы можете объявить кучу переменных и функций с типами аргументов «point». Затем, где-нибудь в другом месте, вы можете объявить какую-нибудь другую структуру, например
type MySuperPoint = ;
и переменные этого типа будут полностью совместимы с переменными типа point.

В противоположность этому, номинативная типизация, принятая в С, С++,C# и Java таких конструкций не допускает. При номинативной типизации каждая структура — это уникальный тип, по умолчанию несовместимый с другими типами.

Структуры в Rust называются «записи» (record). Также имеются кортежи — это те же записи, но с безымянными полями. Элементы кортежа, в отличие от элементов записи, не могут быть изменяемыми.

Имеются вектора — в чем-то подобные обычным массивам, а в чем-то — типу std::vector из stl. При инициализации списком используются квадратные скобки, а не фигурные как в С/С++

Вектор, тем ни менее — динамическая структура данных, в частности, вектора поддерживают конкатенацию.

Есть шаблоны. Их синтаксис вполне логичен, без нагромождений «template» из С++. Поддерживаются шаблоны функций и типов данных.

Язык поддерживает так называемые теги. Это не что иное, как union из Си, с дополнительным полем — кодом используемого варианта (то есть нечто общее между объединением и перечислением). Или, с точки зрения теории — алгебраический тип данных.

В простейшем случае тег идентичен перечислению:

В более сложных случаях каждый элемент «перечисления» — самостоятельная структура, имеющая свой «конструктор».
Еще интересный пример — рекурсивная структура, с помощью которой задается объект типа «список»:

Теги могут участвовать в выражениях сопоставления с образцом, которые могут быть достаточно сложными.

Сопоставление с образцом (pattern matching)

Для начала можно рассматривать паттерн матчинг как улучшенный switch. Используется ключевое слово alt, после которого следует анализируемое выражение, а затем в теле оператора — паттерны и действия в случае совпадения с паттернами.

В качестве «паттеронов» можно использовать не только константы (как в Си), но и более сложные выражения — переменные, кортежи, диапазоны, типы, символы-заполнители (placeholders, ‘_’). Можно прописывать дополнительные условия с помощью оператора when, следующего сразу за паттерном. Существует специальный вариант оператора для матчинга типов. Такое возможно, поскольку в языке присутствует универсальный вариантный тип any, объекты которого могут содержать значения любого типа.

Указатели. Кроме обычных «сишных» указателей, в Rust поддерживаются специальные «умные» указатели со встроенным подсчетом ссылок — разделяемые (Shared boxes) и уникальные (Unique boxes). Они в чем-то подобны shared_ptr и unique_ptr из С++. Они имеют свой синтаксис: @ для разделяемых и

для уникальных. Для уникальных указателей вместо копирования существует специальная операция — перемещение:

после такого перемещения указатель x деинициализируется.

Замыкания, частичное применение, итераторы

С этого места начинается функциональное программирование. В Rust полностью поддерживается концепция функций высшего порядка — то есть функций, которые могут принимать в качестве своих аргументов и возвращать другие функции.

1. Ключевое слово lambda используется для объявления вложенной функции или функционального типа данных.

В этом примере мы имеем функцию make_plus_function, принимающую один аргумент «x» типа int и возвращающую функцию типа «int->int» (здесь lambda — ключевое слово). В теле функции описывается эта самая фунция. Немного сбивает с толку отсутствие оператора «return», впрочем, для ФП это обычное дело.

2. Ключевое слово block используется для объявления функционального типа — аргумента функции, в качестве которого можно подставить нечто, похожее на блок обычного кода.

Здесь мы имеем функцию, на вход которой подается блок — по сути лямбда-функция типа «int->int», и вектор типа int (о синтаксисе векторов далее). Сам «блок» в вызывающем коде записыавется с помощью несколько необычного синтаксиса <|x| x + 1 >. Лично мне больше нравятся лямбды в C#, символ | упорно воспринимается как битовое ИЛИ (которое, кстати, в Rust также есть, как и все старые добные сишные операции).

3. Частичное применение — это создание функции на основе другой функции с большим количеством аргументов путем указания значений некоторых аргументов этой другой функции. Для этого используется ключевое слово bind и символ-заполнитель «_»:

Чтобы было понятнее, скажу сразу, что такое можно сделать на обычном Си путем создания простейшей обертки, как-то так:
const char* daynum (int i) < const char *s =<"mo", "tu", "we", "do", "fr", "sa", "su">; return s[i]; >

Но частичное применение — это функциональный стиль, а не процедурный (кстати, из приведенного примера неясно, как сделать частичное применение, чтобы получить функцию без аргументов)

Еще пример: объявляется функция add с двумя аргументами int, возвращающая int. Далее объявляется функциональный тип single_param_fn, имеющий один аргумент int и возвращающий int. С помощью bind объявляются два функциональных объекта add4 и add5, построенные на основе функции add, у которой частично заданы аргументы.

Функциональные объекты можно вызывать также, как и обычные функции.

4. Чистые функции и предикаты
Чистые (pure) функции — это функции, не имеющие побочных эффектов (в том числе не вызывающие никаких других функций, кроме чистых). Такие функции выдяляются ключевым словом pure.

Предикаты — это чистые (pure) функции, возвращающие тип bool. Такие функции могут использоваться в системе typestate (см. дальше), то есть вызываться на этапе компиляции для различных статических проверок.

Синтаксические макросы
Планируемая фича, но очень полезная. В Rust она пока на стадии начальной разработки.

Выражение, аналогичное сишному printf, но выполняющееся во время компиляции (соответственно, все ошибки аргументов выявляются на стадии компиляции). К сожалению, материалов по синтаксическим макросам крайне мало, да и сами они находятся в стадии разработки, но есть надежда что получится что-то типа макросов Nemerle.
Кстати, в отличие от того же Nemerle, решение выделить макросы синтаксически с помощью символа # считаю очень грамотным: макрос — это сущность, очень сильно отличающаяся от функции, и я считаю важным с первого взгляда видеть, где в коде вызываются функции, а где — макросы.

Атрибуты

Концепция, похожая на атрибуты C# (и даже со схожим синтаксисом). За это разработчикам отдельное спасибо. Как и следовало ожидать, атрибуты добавляют метаинформацию к той сущности, которую они аннотируют,

Придуман еще один вариант синтаксиса атрибутов — та же строка, но с точкой с запятой в конце, аннотирует текущий контекст. То есть то, что соответствует ближайшим фигурным скобкам, охватывающим такой атрибут.

Параллельные вычисления

Пожалуй, одна из наиблее интересных частей языка. При этом в tutorial на данный момент не описана вообще:)
Программа на Rust состоит из «дерева задач». Каждая задача имеет функцию входа, собственный стек, средства взаимодействия с другими задачами — каналы для исходящей информации и порты для входящей, и владеет некоторой частью объектов в динамической куче.
Множество задач Rust могут существовать в рамках одного процесса операционной системы. Задачи Rust «легковесные»: каждая задача потребляет меньше памяти чем процесс ОС, и переключение между ними осуществляется быстрее чем переключение между процессами ОС (тут, вероятно, имеются в виду все-же «потоки»).

Задача состоит как минимум из одной функции без аргументов. Запуск задачи осуществляется с помощью функции spawn. Каждая задача может иметь каналы, с помощью которых она передает инфорацию другим задачам. Канал — это специальный шаблонный тип chan, параметризируемый типом данных канала. Например, chan — канал для передачи беззнаковых байтов.
Для передачи в канал используется функция send, первым аргументом которой является канал, а вторым — значение для передачи. Фактически эта функция помещает значение во внутренний буфер канала.
Для приема данных используются порты. Порт — это шаблонный тип port, параметризируемый типом данных порта: port — порт для приема беззнаковых байтов.
Для чтения из портов используется функция recv, аргументом которой является порт, а возвращаемым значением — данные из порта. Чтение блокирует задачу, т.е. если порт пуст, задача переходит в состояние ожидания до тех пор, пока другая задача не отправит на связанный с портом канал данные.
Связывание каналов с портами происходит очень просто — путем инициализации канала портом с помощью ключевого слова chan:
let reqport = port();
let reqchan = chan(reqport);
Несколько каналов могут быть подключены к одному порту, но не наоборот — один канал не может быть подключен одновременно к нескольким портам.

Typestate

Общепринятого перевода на русский понятия «typestate» я так и не нашел, поэтому буду называть это «состояния типов». Суть этой фичи в том, что кроме обычного контроля типов, принятого в статической типизации, возможны дополнительные контекстные проверки на этапе компиляции.
В том или ином виде состояния типов знакомы всем программистам — по сообщениям компилятора «переменная используется без инициализации». Компилятор определяет места, где переменная, в которую ни разу не было записи, используется для чтения, и выдает предупреждение. В более общем виде эта идея выглядит так: у каждого объекта есть набор состояний, которые он может принимать. В каждом состоянии для этого объекта определены допустимые и недопустимые операции. И компилятор может выполнять проверки — допустима ли конкретная операция над объектом в том или ином месте программы. Важно, что эти проверки выполняются на этапе компиляции.

Например, если у нас есть объект типа «файл», то у него может быть состояние «закрыт» и «открыт». И операция чтения из файла недопустима, если файл закрыт. В современных языках обычно функция чтения или бросает исключение, или возвращает код ошибки. Система состояний типов могла бы выявить такую ошибку на этапе компиляции — подобно тому, как компилятор определяет, что операция чтения переменной происходит до любой возможной операции записи, он мог бы определить, что метод «Read», допустимый в состоянии «файл открыт», вызывается до метода «Open», переводящего объект в это состояние.

В Rust существует понятие «предикаты» — специальные функции, не имеющие побочных эффектов и возвращающие тип bool. Такие функции могут использоваться компилятором для вызова на этапе компиляции с целью статических проверок тех или иных условий.

Ограничения (constraints) — это специальные проверки, которые могут выполняться на этапе компиляции. Для этого используется ключевое слово check.

Предикаты могут «навешиваться» на входные параметры функций таким вот способом:

Информации по typestate крайне мало, так что многие моменты пока непонятны, но концепция в любом случае интересная.

На этом все. Вполне возможно, что я все-же пропустил какие-то интересные моменты, но статья и так раздулась. При желании можно уже сейчас собрать компилятор Rust и попробовать поиграться с различными примерами. Информация по сборке приведена на официальном сайте языка.

Источник

Краткая история Rust: от хобби до самого популярного ЯП по данным StackOverflow

Rust — это язык системного программирования, создатели которого уделили внимание трем вещам: параллелизму, скорости и безопасности. И хотя Rust считается молодым языком программирования — его первая стабильная версия вышла в 2015 году — он разрабатывается уже более десяти лет.

Сегодня мы бы хотели заглянуть в прошлое и рассказать историю языка Rust, показать, как изменились его функции и возможности за время разработки и привести конкретные примеры внедрения этого ЯП на практике.

Личный проект (2006–2010)

Технология из прошлого, которая призвана спасти будущее от самого себя

— Грэйдон Хор (Graydon Hoare), разработчик Rust

Это одна из цитат Грэйдона Хора, которую озвучил Стив Клабник (Steve Klabnik) из команды разработчиков проекта Rust во время своей презентации на конференции ACM в 2016 году (слайды к презентации вы можете найти по ссылке, а для того, чтобы перемещаться между слайдами, используйте стрелки на клавиатуре). Эти слова хорошо отражают тот факт, что Rust — не революционный язык, имеющий передовые функции. Он просто включает в себя множество рабочих методов из «старых» языков (в том числе C++), повышая их безопасность.

Занимаясь языком, Грэйдон установил определенные правила. Он отмечал, что в первую очередь необходимо уделять внимание семантике языка, а работа над синтаксисом — это последнее дело. Поэтому в ранней реализации Rust ключевые слова были не длиннее пяти символов — язык был «кратким» и использовал такие операторы, как log, ret и fn.

Например, первый код на Rust, который увидел свет, выглядел так:

Как отмечает Стив Клабник, со временем это ограничение было снято: часть ключевых слов «удлинили», например, ret превратился в return, а часть заменили совсем. Для сравнения, в современной реализации языка вывод строки «Привет, мир!» выглядит так:

Также за время эволюции часть концепций и ключевых слов языка была убрана. Когда над языком работал Грэйдон, Rust был объектно-ориентированным и использовал оператор obj для описания объектов. Сейчас как таковое ООП языком не поддерживается, но Rust дает возможность реализовать многие его понятия с помощью абстракций.

Rust также работал с функциями параметрического полиморфизма. Концепции обобщенного программирования в языке сохранились и сейчас (оформление кода вы можете найти в этом документе), однако десять лет назад для обозначения типа параметров использовались квадратные скобки:

Самостоятельно над Rust Грэйдон работал на протяжении четырех лет. За это время ему удалось воплотить в жизнь примерно 90% задуманных функций (часть из которых имела довольно грубую реализацию). Среда для выполнения кода была завершена на 70%. Всего за это время Хор написал 38 тыс. строк кода для компилятора на OCaml.

Переход к Mozilla (2010–2012)

Я не считаю, что у языка должны быть какие-то главные особенности.

Он должен состоять из набора понятных и надежных модулей, которые хорошо «работают» в комбинации друг с другом

— Грэйдон Хор (Graydon Hoare), разработчик Rust

По прошествии четырех лет, Грэйдон решил показать свой прототип менеджеру в Mozilla. В компании проявили интерес к проекту, поскольку искали инструмент для перестройки стека браузера на более простых технологиях, чем C++. Поэтому в компании создали команду (во главе с Грэйдоном) для работы над Rust, который стал основой браузерного движка Servo.

Тогда движок Mozilla не мог полноценно работать с мультиядерными системами, поскольку имел однопоточные схемы обработки контента. Например, однопоточными были функции формирования содержимого окна и запуска JavaScript. Rust позволил разделить код рендеринга на мини-задачи, выполняемые параллельно и экономящие ресурсы центрального процессора.

Кроме ускорения работы за счет распараллеливания операций, Rust позволил повысить защищенность браузера. На тот момент Firefox был реализован на C++ и содержал 4,5 млн строк кода. C++ — это «точный» язык программирования, требующий повышенного внимания к деталям, поэтому ошибки программистов могли приводить к возникновению серьезных уязвимостей. Задачей Rust стало снижение влияния человеческого фактора с помощью компилятора.

В 2010 году разработчики языка сменили используемый до этого компилятор OCaml на компилятор, написанный на Rust. В 2011 году Грэйдон опубликовал сообщение о том, что компилятор сумел успешно «собрать» сам себя, а в 2012 команда Rust объявила о релизе альфа-версии компилятора — его документация была не полной, а скорость создания билда оказалась далека от идеальной, однако он уже поддерживал большинство функций языка и кросс-компиляцию.

Годы typesystem (2012–2014)

Наша целевая аудитория — «разочарованные разработчики C++»

В этот момент Грэйдон отошел от работы над Rust и переключился на другие проекты. Как рассказывает Стив Клабник, после этого система управления стала более «распределенной». Была сформирована федеративная структура, в которой за изменения, вносимые в разные части проекта, отвечала отдельная группа разработчиков.

Команда продолжила расти, и в ней стали появляться люди, разбирающиеся в сложных системах типов. Поэтому началось активное развитие typesystem, и все больше аспектов языка выносились в библиотеки.

Например, на ранних этапах Rust был реализован «сборщик мусора» (GC — Garbage Collector), который Грэйдон внедрил для повышения защищенности памяти. Однако потом разработчики пришли к выводу, что они могут обеспечить тот же уровень надежности с помощью системы типов, и от GC отказались.

Это решение также сказалось на системе указателей, используемой в Rust. До удаления «сборщика мусора» в языке было три основных указателя:

Период с 2012 по 2014 год — это время, когда сообщество Rust начало обретать форму. В нем образовалось три больших «лагеря»: пользователи C++, пользователи скриптовых языков и функциональные программисты. Их экспертиза повлияла на язык — постепенно он стал сочетать в себе парадигмы функционального и процедурного программирования.

В марте 2014 года также был сформирован RFC-процесс, который использовался для представления значимых изменений в языке. Решение строилось по образу и подобию Python PEP, и сейчас в нем сделано 3 тыс. коммитов. Причем в RFC попадает любое изменение, даже вносимое разработчиками. По правилам команды Rust, никто не может вносить крупные изменения, не обсудив решение с сообществом.

Релиз (2015)

Мы не знаем наверняка, что из этого получится

В начале 2015 года была выпущена версия Rust 1.0 Alpha. В ней стабилизировали ядро языка, развили систему макросов, и, наконец, закрепили за целочисленными типами int и uint названия isize и usize. В начале второго квартала того же года Rust 1.0 перешел в бету — к этому моменту репозиторий crates.io имел 1700 крэйтов (структурная единица компиляции), а количество скачиваний из репозитория превысило один миллион.

В мае 2015 года состоялся официальный релиз — Rust 1.0. Это ознаменовало начало стабильности. С этого момента все вносимые изменения должны были иметь обратную совместимость, что позволило использовать Rust в реальных проектах. Он начал находить применение в таких сферах, как game dev, веб-разработка и разработка операционных систем.

Переход в продакшн (май 2016)

Если язык хорош лишь в чем-то одном, то это — провал

В 2015 году площадка StackOverflow провела опрос среди разработчиков, в котором их попросили отметить, с какими языками программирования они работали и с какими хотели бы познакомиться. Тогда Rust занял третью строчку рейтинга. Однако годом позднее он переместился на первое место — 79% пользователей изъявили желание продолжить работу с ним.

Один из резидентов Hacker News назвал главными достоинствами языка прозрачность и простоту документации. Другие пользователи также отмечали открытость и доброжелательность Rust-сообщества, которое всегда готово помочь с изучением особенностей ЯП.

При этом многие разработчики решают продолжить работу с этим языком из-за его механизмов безопасности. Как сказал один из пользователей Reddit: «Программирование на Rust — это как паркур со страховкой и в защите; иногда это выглядит странно, но вы можете делать многие трюки, не боясь сломать себе что-нибудь».

С момента релиза стабильной версии Rust начался период его полноценного использования в продакшн. Одной из первых компаний, которые применили Rust в своем проекте, стала Mozilla. Часть «внутренностей» Firefox 45 для Linux были переписаны на Rust, а начиная с версии Firefox 47, Rust-код присутствует и в версии для Windows. Их Project Quantum, анонсированный в октябре 2016 года, также имеет в своем составе компоненты Servo.

Rust используется и в Dropbox — на этом ЯП написано ядро их продукта. Компания Dropbox создала свое новое облачное хранилище Magic Pocket, в которое перенесла информацию с Amazon S3. Изначально оно было реализовано на языке Go, но при больших нагрузках проблемой становилось высокое потребление памяти и низкая предсказуемость поведения кода на Go. Для решения этих проблем был частично задействован Rust.

В прошлом году использовать Rust для обработки пакетов JavaScript начали в npm. Rust помог исключить задержки в системе, работающей с 350 миллионами пакетов в день. Специалист службы поддержки npm Эшли Уильямс (Ashley Williams) рассказывала об опыте использования Rust на конференции RustFest в Украине. Видео вы найдете по ссылке.

Rust также используем и мы в компании Bitfury. На этом языке программирования реализован наш фреймворк для создания блокчейнов Exonum. Впервые мы представили платформу на конференции RustFest 2017, где показали её возможности и провели воркшоп, на котором продемонстрировали работу сервиса по созданию криптовалют (краткое руководство о том, как создать криптовалюту на Exonum вы можете найти здесь).

Реализация на Rust оказалась кстати при работе со смарт-контрактами. Благодаря этому умные контракты Exonum имеют большую производительность, чем контракты Ethereum (или Fabric). Код платформы полностью открыт и лежит в репозитории проекта на GitHub.

Rust также находит применение в сфере информационной безопасности. Такие проекты как Tor уже переносят часть кода на Rust.

В целом, сегодня Rust в своих продуктах используют 105 компаний. Полный их список (в котором также отмечена и Bitfury Group) можно найти на странице Friends of Rust на официальном сайте. И количество компаний, создающих программные продукты на Rust, постоянно увеличивается, чему разработчики языка очень рады.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *