Что находится внутри трубок башенного кулера
Что находится внутри трубок башенного кулера
7362 удивительных дней работы
Невозможно сказать, какой тип тепловых трубок (ТТ) используется в вашем любимом кулере, просто взглянув на него снаружи. Многие производители умудряются так завуалировать истинную структуру ТТ за множеством маркетинговых названий и фич, поэтому даже если захотеть, сложно определить вид тепл. трубок у Вас в системе охлаждения.
Как вы, наверное, знаете, тепловые трубки представляют собой полые металлические (чаще из меди) трубки, которые эффективно переносят тепло из одного места в другое. Работают они благодаря небольшому количеству жидкости, содержащемуся в запечатанной трубе и находящемуся внутри в небольшом вакууме. Вакуум снижает температуру кипения рабочей жидкости, благодаря этому относительно небольшое повышение температуры вызывает испарение жидкости и, соотвественно, перемещение ее в парообразном виде к холодному концу тепловой трубки, где «хладоген» конденсируется обратно в жидкость. Затем внутренняя структура, а именно фитиль, помогает быстро вернуть рабочую жидкость обратно на горячий конец тепловой трубы под воздействием капиллярных сил.
Основным различием в строение ТТ чаще всего является именно разнообразная внутренняя структура, благодаря которой некоторые «Heatpipe» эффективнее, чем другие, но при этом у каждого вида есть свои недостатки, а также некоторые ограничения в отношении ориентации относительно земли и воздействия гравитации. Давайте рассмотрим три основных типа ТТ, которые на данный момент используется в компьютерной промышленности. Фотографии сотрудникам сайта Frostytech любезно предоставила компания Thermolab, создатель суперкулеров BARAM и BADA.
Порошок из меди, сплавленный на стенках трубки
Очень эффективная ТТ, но при этом и одна из самых дорогих в производстве технологий; практически нет ограничений по ориентации относительно земли.
Капиллярный эффект осуществляется канавками на внутренней стороне тепловой трубки. В зависимости от формы канавок есть разница в производительности. Расходы на производство такого решения довольно низкие, но подобные трубки гораздо более восприимчивы к притяжению и могу по-разному работать в зависимости от ориентации. Компания Тhermolab заявляет, что вертикальная ориентация является наилучшей, и рекомендует не пренебрегать рекомендациями производителей относительно правильно установки кулеров на CPU.
Самое распространенное строение тепловой трубки в процессорных кулерах. В роли фитиля выступает многослойная металлическая сетка; при этом решение не выделяется заоблачной ценой и имеет лучшее соотношение цена\производительность.
Тепловые трубки
и применение технологий на их основе
для охлаждения узлов компьютеров и радиоаппаратуры
на страницах сайта
electrosad.ru
Кратко рассмотрим конструкции нескольких кулеров на тепловых трубках. Этот вид теплообменных устройств известен уже давно, я встречал упоминания о них в книге по теплообмену издания 1988 года. Уже тогда они применялись в технике. Некоторые авторы вводят читателей в заблуждение, говоря о необходимости ориентировать тепловые трубки определенным образом в пространстве. Это требования относятся только к термосифонам. Тепловые трубки работают в любом положении. Отличие Вы можете найти на просторах internet введя в строку поиска слово «термосифон».
Немного истории
Впервые идея тепловой трубы была предложена Гоглером (ф-ма Дженерал Моторс корп.) и описана в пат. США 2 350 348 (заявл. 21.12.1942, опубл. 6.06.1944)
Первая статья обзорного характера по тепловым трубам в СССР вышла в 1969 (Москвин Ю.В., Филиппов Ю.А. Тепловые трубы. «Теплофизика высоких температур», 1969., т.7, № 4, с. 766-775 ).
В настоящее время широкое распространение получили кулеры на тепловых трубках.
Эффективность которых объясняется их принципом работы.
Теплосъем в них обеспечивается за счет испарения теплоносителя в зоне тепловыделения. А удельная теплота испарения теплоносителя, в сотни раз выше чем удельная теплоемкость воды, одного из лучших теплоносителей работающего при атмосферном давлении и в приемлемых для электронной аппаратуры температурах (30-90 º С). Для этилового спирта это около 40 раз. В соответствующее количество раз и больше отводимая от охлаждаемого объекта мощность.
Этот замкнутый цикл происходящей в герметичном объеме обеспечивает транспортирования тепла от его источника в зону теплосъема. Главная их особенность, которая способствует их применению — низкое тепловое сопротивление между холодным и горячим концами.
Это тепловое сопротивление тем меньше чем больше диаметр тепловой трубки, что и понятно. Толстая трубка не только содержит больший объем теплоносителя, но и имеет меньшее сопротивление.
Основные достигнутые характеристики современных тепловых труб:
Теплоносители кулеров на ТТ
Из физики известно, что на испарение жидкости необходимо затратить много большую энергию чем на ее нагрев. Сравните удельную теплоемкость и удельную теплоту испарения жидкостей приведенную в Таб.1. Это свойство жидкостей и используется в тепловых трубках.
В качестве теплоносителя в тепловых трубках можно применять множество жидкостей с низкой температурой испарения.
Вы можете этот список дополнить фреоном, аммиаком и другими соединениями, но нас интересует диапазон температур от +20 дл +80 град.С, поэтому для наглядности этого хватит.
Посмотрим таблицу 1.
Не беда что температура кипения перечисленных жидкостей находится в диапазоне от 100 до 34 град.С. Есть простой способ создать условия, чтобы жидкость кипела при заданной температуре. Просто надо снизить давление. Зависимость температуры кипения от давления для воды показана на Рис.1.
Рассмотрим последний столбец табл.1. Это удельная теплота испарения, она показывает сколько Дж тепловой энергии можно отвести при испарении 1 кг данной жидкости. В этом столбце не имеет конкурентов ВОДА! Ближайший соперник (спирт метиловый) имеет вдвое худшее значение! Да и по токсичности и другим параметрам она не имеет конкуренции. Энергия затраченная на испарение описывается формулой [1]
Напомню 1 Дж = 1 Вт*сек или 1Вт = 1 Дж/сек.
Еще множество параметров влияют на эффективность отвода тепла с помощью ТТ.
В первую очередь это кратность обращения теплоносителя в единицу времени. Ее определяют: эффективность теплосъема с горячего конца трубки, сопротивление движению нагретого пара при его движении от горячего к холодному концу тепловой трубки, пропускная способность капиллярного канала для оттока конденсата воды от холодного конца ТТ.
Перечисленное позволяет сделать однозначный вывод
— чем больше диаметр ТТ тем эффективнее ее работа.
Пермская компания «Системы СТК» приводит следующие данные по связи отводимой тепловой мощности и диаметра тепловой трубки: |
Приводим таблицу отводимых мощностей для трубок с любой пространственной ориентацией.
Диаметр трубки, мм | Отводимая тепловая мощность, Вт (не менее) |
3 | 5 |
6 | 12 |
8 | 25 |
10 | 35 |
12 | 50 |
16 | 70 |
При вертикальной ориентации трубы (испаритель внизу) и при небольших отклонениях от вертикали, отводимая тепловая мощность может быть увеличена в 2-3 раза по сравнению с указанной в таблице.
Еще одно требование оказывающее существенное влияние на эффективность работы кулера на тепловых трубках:
Каждый тепловой контакт и теплопроводящий элемент увеличивает тепловое сопротивление конструкции!
Важно! До тех пор пока теплоноситель в кулере на тепловых трубках не испаряется (не закипает), ее тепловое сопротивление велико и определяется только способностью отводить тепло конструкцией основания! Это много меньше кулера на ребристом радиаторе! |
Технологии
Heat Transporting System (HTS) в IH-4200hp
В декабре 2005 года компания ICE HAMMER Electronics представила новый вид кулеров на тепловых трубках высокого давления построенных на основе новой технологии Heat Transporting System (HTS).
Не смотря на имеющиеся публикации, нельзя не сказать несколько слов об этой системе.
Учитывая гравитационную физику процессов к данном кулер можно предположить, что его эффективность будет максимальна при нахождении трубок в вертикальном положении.
Может быть не стоило повторять имеющуюся информацию, но этот кулер имеет одну очень важную особенность которую должны знать и о которой я скажу ниже.
По графику на рис. 5 можно предположить, что при температуре порядка 50 град.С кипение смеси наиболее эффективно.
Посмотрим как меняется тепловое сопротивление кулера IH-4200hp в заявленном производителем диапазоне температур показанном на рис.5.
Из графика на рис.6 хорошо видно, что данный кулер выходит на номинальное тепловое сопротивление при температуре источника тепла выше 42 град.С. Это и есть реальная температура кипения смеси.
Те кто решил использовать этот кулер должен помнить, что это горячий кулер и поэтому он требует аккуратного нанесения термоинтерфейса, который должен обладать с низким тепловым сопротивлением (меньше ).
Но, следует отметить, это единственный кулер на технологии ТТ который работает и при температуре во всем диапазоне температур.
Пока единственное решение для процессоров с тепловыделением до 200 Вт.
» Тепловая лента» NCU-1000 производства фирмы TS Heatronics
Еще в 2003 году появились сообщения о производстве нового кулера на «тепловой ленте» он показан на рисунке 7.
Но поскольку упоминаний о нем больше не было, похоже в серию он так и не пошел.
Да это в общем и понятно.
В плоской конструкции с тонким каналом, выдержать постоянную толщину канала по всей длине ленты очень сложно. Если не сказать невозможно, и даже самые хитрые японцы не в силах убрать деформации ленты при пайке (приварке) тепловой ленты к ребрам, основанию.
Тепловые деформации приводят к сужению канала, ухудшению циркуляции теплоносителя.
Celsia Technologies и ее технология «NanoSpreader™».
Предложенная Celsia Technologies технология «NanoSpreader™» представляет собой дальнейшее развитие круглых «Тепловых трубок» и «Тепловых лент» TS Heatronics.
Технология «NanoSpreader™» предлагает теплопроводящую ленту шириной от 70 до 500 мм, толщиной от 1,5 до 3,5 мм, с заявленным тепловым сопротивлением 0,01-0,03 К/Вт.
Возможные применения технологии «NanoSpreader™» показаны на рис. 9.
Главным применением теплопроводных лент может быть переброс тепловых потоков от тепловыделяющих узлов к местам где возможен эффективный съем тепла. Это особенно важно для сверх миниатюрной электронной техники, например ноутбуков.
Они так же могут служить для вывода за пределы корпуса радиоаппаратуры или компьютера тепловых потоков от тепловыделяющих узлов.
Одним из применений сверх низкого теплового сопротивления теплопроводной ленты может быть распределение тепла по поверхности радиаторов изготовленных из алюминиевых сплавов.
Температура закипания теплоносителя в тепловых трубках
На рисунке 10, взятом из (4) видно, что в режиме холостого хода процессор Pentium 4 разогнанный до 4,06 ГГц имел температуру ядра от 46,5 до 48,5 град.С. Это значит, что теплоноситель в тепловых трубках начинал кипеть при данной температуре.
При малом тепловыделении (при температурах ниже точки кипения теплоносителя) кулер практически не отводит тепла (см. выше). (На охлаждение работает только поверхность металлоконструкций основания кулера, эффективность которой мала). В результате температура основания даже при мощности тепловыделения около 10 Вт поднимается до 46- 49 град.С.
Аналогичная ситуация показана на рисунке 11 взятом из (3).
Особенности характеристики кулера на тепловых трубках.
Характеристика кулера на тепловых трубках имеет вид подобный показанному на рис. 4.:
На начальном участке (температура от 0 до t кр=36град.С) охлаждение обеспечивают металлоконструкции кулера. На этом участке его тепловое сопротивление велико, кипения теплоносителя нет.
На следующем участке (температура процессора t кр=36 до t раб=55 град.С) начинает закипать теплоноситель в ТТ, тепловое сопротивление достигает номинального.
Последний участок (температура процессора более t раб=55 градусов) теплоноситель активно кипит, тепловое сопротивление кулера равно номинальному.
Это рабочий участок, на нем и обеспечивается отвод тепла от процессора.
Заключение
Кулеры на тепловых трубках прочно занимают свою нишу, конкурируя с кулерами на основе ребристых радиаторов по техническим характеристикам. И когда цена не имеет значения, кулеры на тепловых трубках можно применять и при тепловыделении до 100 Вт. Но некоторые модели позволяют работать при тепловыделении процессора от 100 до 200 Вт.
Но кулеры на тепловых трубках сами имея малые тепловые сопротивления (от 0,3 до 0,09 град/Вт) работая на тепловыделении около 100 Вт (и более), требуют применения эффективных термопаст. Тепловое сопротивление применяемых термоинтерфейсов в идеальном случае должно быть менее 10% от теплового сопротивления кулера на ТТ. Это позволит полностью использовать ресурс кулера.
Но поскольку часто это просто нереально, то тепловое сопротивление термоинтерфейса должно по крайней мере учитываться.
При выборе наиболее эффективного кулера на ТТ необходимо выбирать кулер с большим числом тепловых трубок имеющих больший диаметр. Конструкция кулера должна обеспечивать непосредственный контакт ТТ с охлаждаемой поверхностью и иметь площадь оребрения холодной части (охладителя), соответствующее выделяемой мощности.
Мы должны помнить:
1. Тепловые трубки применяемые кулерах для ПК диаметром 6 мм имеют максимальную отводимую мощность в диапазоне от 15 до 25 Вт на трубку в зависимости от ее конструкции;
2. Температура закипания теплоносителя в тепловой трубке (а значит и минимальная температура охлаждаемого объекта) находится в диапазоне от 30 до 55 °С, что определяется давлением в трубке и примененным теплоносителем;
3. Для эффективной работы тепловой трубки необходимо обеспечить эффективный отвод тепла от ее «горячего» конца.
Cравнение кулеров c использованием тепловых трубок
Огонь, вода и медные трубы
Thermalright SP-94
У тайваньской компании Thermalright очень интересный подход к бизнесу: она продает только радиаторы. То есть пользователь должен сам установить вентилятор по своему вкусу. Радиатор поставляется в большой картонной коробке:
Стоит отметить, что все компоненты тщательно упакованы в поролон, для предотвращения повреждений при транспортировке. Помимо самого радиатора, в комплекте есть крепеж, усилительная пластина, шприц с термопастой и крепеж для вентилятора.
В первую очередь, рассматриваем конструкцию радиатора.
Итак, на полностью медном основании установлено более двух десятков медных ребер. А для более быстрой теплопередачи в основание радиатора встроено три «тепловых» трубки.
При этом, каждое ребро соприкасается с трубкой довольно обширной площадью. Для этого отверстия в ребрах имеют специальные «лепестки», которые плотно охватывают трубку. Кроме того, между «трубкой» и «лепестком» есть небольшой слой термоинтерфейса, что также способствует теплопередаче.
Не менее качественно реализован контакт между ребрами и основанием радиатора. Каждое ребро вставлено в специальную прорезь в основании. Кроме того, ребра имеют небольшие площадки, которые соприкасаются с верхней стороной основания. В этом месте активно используется термоинтерфейс.
В результате можно сделать вывод о том, что хотя ребра и основание не составляют единого целого, эффективность радиатора SP-94 не уступает цельномедному.
Что касается основания, то качество его обработки очень, очень хорошее. Как и на большинстве качественных кулеров, на основании есть защитная пленка, которую нужно снять непосредственно перед установкой радиатора. Кстати, установка радиатора процесс весьма длительный и обычному пользователю может показаться трудным. Особенно, если учесть отсутствие руководства по установке как внутри коробки, так и на сайте компании.
При желании под втулки можно проложить пластиковые прокладки, которые входят в комплектацию SP-94.
Далее все просто: вставляем подпружиненные винты и равномерно закручиваем их до упора.
2800RPM и уровнем шума
Auras CoolEngine-T6C (Golden)
Перед нами два кулера, совершенно малоизвестной на российском рынке, компании Auras.
Оба кулера предназначены для процессоров Pentium4 и имеют идентичную конструкцию. Их отличие заключается в разных вентиляторах. Кроме того, один кулер имеет золотистую окраску, в связи с чем получил наименование Golden.
Основная особенность кулера CoolEngine-T6C заключается в том, что вентилятор расположен не горизонтально (как на большинстве кулеров), в вертикально.
От основания кулера идут две тепловых трубки, которые пронизывают насквозь все ребра. Как и у радиатора Thermalright SP-94, у радиаторов Auras отверстие в каждом ребре имеет выдавленную площадку, с помощью которой оно тесно охватывает тепловую трубку. Таким способом достигается высокая эффективность теплопередачи.
Эта пластина встроена в другую пластину, которая выполнена из алюминия. Последняя также имеет десяток коротеньких ребер, которые тоже участвуют в отводе тепла.
Более подробно о вентиляторе: он имеет скорость вращения 3800RPM и уровень шума = 32.3 dBa. Субъективно уровень шума достаточно высокий, и на месте покупателя кулера CoolEngine-T6C я бы заменил вентилятор на более тихий (или подключил бы его через регулятор скорости вращения).
Теперь пара слов о модификации Golden. Фактически, перед нами тот же самый кулер CoolEngine-T6C, только с другим вентилятором и другой окраской.
Субъективно, уровень шума еще больше, чем у T6C, однако у модели Golden есть один важный плюс. Вентилятор изготовлен из прозрачной пластмассы, а по его углам установлены синие светодиоды. В результате при работе кулер окружает красивая синяя подсветка.
Poseidon WCL-02 (или Iceberg 1)
В нашем тестировании приняла участие система водяного охлаждения Poseidon, производства корейской фирмы 3RSystem. Кроме того, данная система продается под торговой маркой Iceberg 1 (впрочем, возможна и обратная ситуация). Данный продукт появился на российском рынке в начале 2002года, и занял пустующую нишу высокоэффективных систем охлаждения.
Конечно, на тот момент уже многие энтузиасты использовали самодельные системы водяного охлаждения. Но вот для обычного пользователя, это была недостижимая мечта о тихом и одновременно эффективном отводе тепла от процессора.
Система поставляется в большой картонной коробке; все ее компоненты тщательно упакованы.
Отдельно стоит сказать о руководстве пользователя, которое более-менее подробно описывает процесс сборки. Впрочем, подробно останавливаться на этом этапе мы не будем, и вот по какой причине: данный продукт уже практически исчез из продажи. Причина в сильном завышении стоимости: на момент появления в продаже система Poseidon WCL-02 стоила более 100$ (при ориентировочной себестоимости в 20-30$). За эти деньги пользователь получал алюминиевый вотерблок, алюминиевый радиатор + вентилятор, резервуар для жидкости + помпа, а также соединительную трубку.
А где-то через полгода в продаже стали появляться более эффективные системы с медными радиаторами и вотерблоками, практически по той же цене. В результате они вытеснили Poseidon WCL-02 с рынка.
В сборе система выглядит следующим образом:
Как отлично видно, система занимает очень мало место и легко помещается внутрь стандартного ATX корпуса.
Пару слов стоит сказать о вотерблоке: качество обработки основания на момент приобретения было ужасным. То что вы видите на следующем фото, это результат 15минутной полировки.
Теперь пара слов об эффективности. При установке на процессоры AMD, система Poseidon охлаждает их очень плохо. Для наглядности я приведу результаты одного нашего старого обзора:
Причина слабой эффективности заключается в том, что малое по размерам ядро процессора AMD Athlon XP непосредственно контактирует с алюминиевым вотерблоком. Как следствие при сильной нагрузке алюминий не успевает отводить тепло и тем-ра ядра держится на высоком уровне.
Однако подобная проблема частично отсутствует при установке Poseidon WCL-02 на систему с процессором Pentium4, который имеет встроенный heatspreader (медная пластина выполняющая роль распределителя тепла). В результате площадь активного теплообмена возрастает, что приводит к довольно значительному росту эффективности.
В результате после модификации крепления вотерблока,
система Poseidon WCL-02 стала использоваться в большинстве тестов материнских плат под процессоры Intel. И более чем за полтора лет с момента приобретения, у меня не возникло никаких проблем с герметичностью системы или с работой помпы.
Тестирование
Тестирование систем охлаждения производилось на материнской плате Abit IC7-G ; в качестве утилиты мониторинга использовалась Motherboard Monitor. Также бы выбран процессор Intel Pentium4 2.4 степпинга D1, который работал на частоте 3.0Ггерц без повышения напряжения.
Кроме того, все кулеры были испытаны в более жестком режиме: процессор работал на частоте 3.6Ггерц при напряжении Vcore=1.65V.
Разогрев процессора осуществлялся с помощью двух запущенных копий программы BurnP6. Два работающих приложения позволяют полностью загрузить процессор (напомню что процессоры степпинга D1 имеют поддержку HyperThreading).
Итак, эффективность охлаждения процессора Pentium4 3.0Ггерц.
При использовании всех кулеров система работала стабильно. Особенно хороши результаты кулера Zalman 7000 и радиатора Thermalright + вентилятор Zalman ZM-F2. Система водяного охлаждения проиграла им около 4 градусов С. Наиболее вероятная причина заключается в слабой эффективности алюминиевого вотерблока.
И наконец, я установил радиатор Thermalright SP-94 с вентилятором Zalman ZM-F2. Результат превзошел все ожидания: температура процессора не превысила 67 градусов C.
Естественно у читателя может возникнуть вопрос: а на сколько эффективность радиатора SP-94 хужелучше «нормальных» систем жидкостного охлаждения, которые имеют вотерблок и радиатор выполненные из меди. Так вот, в нашем тестировании принимала еще одна относительно недорогая(
Естественно, этот обзор будет интересен в первую очередь компьютерным энтузиастам, выбирающим систему охлаждения для будущих процессоров на ядре Prescott. Что касается обычных пользователей, то им беспокоится не о чем. Ко времени выхода этих процессоров, Intel решит технологические сложности с повышенным уровнем тепловыделения или разработает высокоэффективный «боксовый» кулер.
15$), то эти кулеры смогут найти своего покупателя для систем «среднего уровня».
Заключение
Радиатор Thermalright SP-94
Кулер Auras CoolEngine-T6C
Кулер Auras CoolEngine-T6C-Golden
Система жидкостного охлаждения Poseidon WCL-02
Кулер Zalman 7000 Cu и AlCu
Дополнительные материалы
Вопросы, пожелания и предложения просьба оставлять в конференции.