Что находится вне космоса
Есть ли границы космоса и что находится за ними
Вопрос, что находится за космосом и существуют ли у него границы, волнует не только ученых, посвятивших изучению космических просторов всю жизнь. Об этом думают простые люди, когда смотрят на ночное небо, оно кажется безграничным, но логично было бы предположить, что у всего существуют пределы. На самом деле звезды, которые мы видим ночью, это лишь незначительная часть от всего пространства. Точного ответа на вопрос о границах космоса нет даже у астрономов и других ученых, но они разработали несколько правдоподобных теорий относительно размеров Вселенной. Они перечислены в этой статье.
С момента начала освоения космоса было выдвинуто множество теорий относительно его размера. На данной стадии своего развития наука не готова подтвердить ни одну из них, но знаний хватает, чтобы опровергнуть многие предположения. Возможно, когда-нибудь человечество получит точный ответ, сейчас мы можем лишь изучить самые интересные и правдоподобные теории. Если тебя интересуют перспективы освоения космического пространства, то обрати внимание на материал “Что нужно сделать ученым, чтобы космос стал нашим домом?”.
Объем Хаббла и Метагалактика
Наука отталкивалась от объема наблюдаемой Вселенной, то есть той части, излучение откуда может быть зафиксировано. Принимаются сигналы и из той части, которая скрыта от обзора, ее назвали Метагалактика. Ее самая отдаленная точка — это зона, в которой принимается поверхность излучения, освобожденного при Большом взрыве. Таким образом был определен радиус Метагалактики, он составляет 46 миллиардов световых лет. Что находится дальше — неизвестно, и с этого момента начинаются расхождения во мнениях.
Мультивселенная
Согласно этой теории, охватываемый Универсум — это лишь один мир, а их существует великое множество. Они созданы из первичной материи при Большом взрыве, после чего развивались по собственному эволюционному сценарию, какие-то из них умирали, и на их место приходил новые миры. Этого предположения придерживался известный физик Стивен Хокинг из Британии, а также Нил Тайсон, Брайан Грин, Алан Гут.
Многомировая интерпретация Эверетта гласит, что в каждом из таких миров работают одни и те же природные закономерности, но они находятся на разных стадиях развития. При этом все миры параллельны, они могут изредка встречаться в каких-то точках соприкосновения, но в целом развиваются автономно.
Данная теория может оказаться правдивой, но сейчас она скорее философская, чем научная. Ученые не могут подтвердить или опровергнуть доводы, проведя эксперимент. Но если сторонники правы, то у нашей Вселенной есть пределы, и ей отведен определенный срок существования.
Просто пустота
Наука установила, что Универсум расширяется, это неоспоримый факт. Но нельзя с точностью утверждать, есть ли у этого расширения пределы. Некоторые физики предполагают, что границы существуют, а за их пределами есть только абсолютная пустота, то есть нет ничего. Там не могут работать законы физики эту область нельзя увидеть, так как в нее не может попасть свет. У пустоты нет ограничений по времени и пространству, поэтому мироздание видится, как шар, которых парит в бесконечности без каких-либо физических параметров. Простым людям тяжело воспринимать эту теорию, так как они не могут представить абсолютную пустоту, которая по версии ученых находится за пределами Вселенной.
Большая проекция
Еще одна теория содержится в последней работе Хокинга, ее опубликовали уже после того, как ученого не стало. Суть любопытной гипотезы в том, что рассматриваемое мироздание представляет собой голограмму первичной плоскости, которая была сформирована при Большом взрыве. Если верить этому предположению, то наш мир двумерен, мы видим его объемным, но это только иллюзия. А любые характеристики Универсума по времени и пространству являются проекционным искажением той самой плоскости. Но сейчас доказать эту гипотезу невозможно. Если предположить, что действительность двумерна, то в ней не должны работать законы, рассчитанные на трехмерность, для ученых это повод для размышления.
Нельзя сказать, какая из версий ближе к истине, как и точно ответить, что находится за космосом. Но человечество не останавливается в космическом прогрессе, углубляясь в изучении. Узнать об этом подробнее можно из статьи “Значение Международной космической станции”.
Есть ли что-нибудь за пределами наблюдаемой Вселенной?
Вопрос о том, что находится за пределами Вселенной представители рода человеческого задавали себе не одно столетие. Но приблизительное понимание того, что представляет собой наш космический дом, появилось (по меркам той же Вселенной) совсем недавно. Сегодня мы знаем, что Вселенная родилась около 14 миллиардов лет назад в результате Большого взрыва и с тех пор расширяется с ускорением, параллельно остывая. Кажется, это противоречит здравому смыслу, но чтобы понять удивительные законы космоса и то, как они работают, умнейшие из нас трудились не одно поколение. Но знания, накопленные за эти годы, увы, по-прежнему не позволяют собрать головоломку воедино. Да, мы знаем, как выглядит наблюдаемая Вселенная – с помощью мощнейших телескопов ученые наносят на карту не только звезды, но миллиарды галактик и их скопления, заглядывая все дальше и дальше в прошлое, вплоть до Большого взрыва. Но могут ли они узнать, находится ли что-то за пределами нашей Вселенной? Есть ли что-нибудь там, куда не только невозможно отправить самые мощные инструменты, но и попросту заглянуть?
Перед вами цветной рентген-снимок Вселенной в ее самый обычный день: ускорение и распад материи, нагретой до сверхвысоких температур, обжигающий газ, ненасытные черные дыры и взрывы звезд.
Что мы знаем о Вселенной?
Чтобы ответить на вопрос о том, что находится за пределами вселенной, сначала нужно точно определить, что мы подразумеваем под «вселенной». Если вы воспринимаете это буквально как все вещи, которые могут существовать во всем пространстве и времени, то за пределами вселенной не может быть ничего. Даже если вы представляете, что вселенная имеет некоторый конечный размер, и представляете что-то вне этого объема, тогда все, что находится снаружи, также должно быть включено во вселенную.
Даже если вселенная представляет собой бесформенную, безымянную пустоту – абсолютное ничего – это все равно является чем-то и входит в список «всего существующего» — и, следовательно, по определению является частью вселенной. Если вселенная бесконечна по размеру, то беспокоиться об этой головоломке действительно не нужно. Вселенная, будучи всем, что есть, бесконечно велика и не имеет края, поэтому нет ничего «внешнего», о котором можно было бы говорить.
Часть наблюдаемой Вселенной, доступной для изучения современными астрономическими методами, называется Метагалактикой; она расширяется по мере совершенствования приборов.
С другой стороны, конечно, есть внешняя сторона нашего наблюдаемого участка Вселенной. Космос стар и свет распространяется быстро. Таким образом, за всю историю вселенной мы не получали свет от каждой отдельной галактики. В настоящее время ширина наблюдаемой Вселенной составляет около 90 миллиардов световых лет. И, по-видимому, за этой границей находятся миллиарды других случайных звезд и галактик.
Но есть ли что-то помимо этого?
Границы Вселенной
Космологи не уверены, является ли Вселенная бесконечно большой или просто чрезвычайно большой. Чтобы измерить Вселенную, астрономы вместо этого смотрят на ее кривизну. Геометрическая кривая в больших масштабах Вселенной говорит о ее общей форме. Если вселенная идеально геометрически плоская, то она может быть бесконечной. Если она изогнута, как поверхность Земли, то она имеет конечный объем.
Как пишет в статье для Space.com астрофизик Пол Саттер, текущие наблюдения и измерения кривизны Вселенной показывают, что она практически идеально плоская. Можно подумать, будто это означает, что вселенная бесконечна, но все не так просто. Даже в случае плоской вселенной космос не обязательно должен быть бесконечно большим.
«Возьмем, к примеру, поверхность цилиндра. Он геометрически плоский, потому что параллельные линии, нарисованные на поверхности, остаются параллельными (это одно из определений «плоскостности»), и все же он имеет конечный размер. То же самое можно сказать и о Вселенной: она может быть абсолютно плоской, но замкнутой в себе», – Пол Саттер, астрофизик из SUNY Stony Brook и Института Флэтирона в Нью-Йорке.
Перед вами галактика, обнаруженная на краю Вселенной.
Но даже если вселенная конечна, это не обязательно означает, что где-о есть ее край. Возможно, наша трехмерная вселенная встроена в какую-то более крупную многомерную конструкцию. Это совершенно нормально и действительно является частью некоторых экзотических моделей физики. Но в настоящее время у ученых нет абсолютно никакой возможности проверить это.
Неправильный вопрос?
Вселенную можно представить как гигантский шар, наполненный звездами, галактиками и всевозможными интересными астрофизическими объектами. То, как эти объекты выглядят снаружи, также несложно представить –вспомните знаменитые фотографии астронавтов из космоса – они часто смотрят на земной шар с безмятежной орбиты наверху. Но эта общая перспектива вряд ли нужна вселенной для существования, ведь она просто есть.
«Когда вы представляете вселенную в виде шара, плавающего посреди пустоты, вы разыгрываете над собой мысленный трюк, которого математика не требует», – пишет Саттер.
Многие физики всерьез рассматривают теорию Мультивселенной, согласно которой существует бесчисленное множество миров.
Вообще, учитывая накопленный массив данных о наблюдаемой Вселенной (и хорошенько поразмыслив), кажется, что вопрос о том, находится ли что-то за ее пределами попросту не имеет смысла. Это все равно, что спрашивать «Какой звук издает фиолетовый цвет?» Откровенно бессмысленный вопрос, потому что в нем мы пытаемся объединить две несвязанные концепции. А как вы думаете, находится ли что-то за пределами Вселенной и не бессмысленный ли это вопрос? Ответ будем ждать в нашем Telegram-чате, а также комментариях к этой статье.
Что находится за пределами Вселенной
Что находится за пределами Вселенной? Этим вопросом задаются как ученые, так и обычные люди, интересующиеся тайнами мироздания. Та часть звездного неба, что доступна нам по ночам, является лишь небольшой частью огромного космического пространства. В научном сообществе все еще ведутся споры о том, где проходит граница Вселенной и есть ли она вообще.
Существует множество гипотез, рассуждающих о возможных пределах космоса. Но главная проблема каждой из них заключается в том, что их невозможно ни доказать, ни опровергнуть. Современные космические технологии не позволяют нам исследовать настолько огромное пространство. Поэтому научное сообщество продолжает выдвигать свои гипотезы о том, что находится на краю Вселенной и за ее пределами. С самыми популярными из них вы познакомитесь в этой статье.
Мультивселенная
Обозримая Вселенная
Прежде чем начать рассуждения о том, что находится за пределами Вселенной, необходимо понять, где эти самые пределы. Естественно, узнать о настоящих границах космического пространства мы не можем, но точно знаем, где заканчивается обозримая часть Вселенной – Метагалактика.
Наблюдаемый космос – это пространство, из которого наши технологии способны регистрировать рассеяние реликтового излучения. Те области, где оно заканчивается, и принято считать за границы обозримого космоса. Реликтовое излучение – это энергия, высвободившаяся во время Большого взрыва и распространяющаяся по Вселенной до сих пор. Примерный радиус Метагалактики составляет 46 миллиардов световых лет.
Обозримая Вселенная
Однако насчет обозримой Вселенной у ученых есть два противоположных мнения. Одни считают, что за пределами Метагалактики есть и другие системы, а мы наблюдаем лишь малую часть необъятного космоса. Другое мнение говорит о том, что это и есть вся Вселенная, и за ее пределами уже ничего нет.
Помимо Метагалактики, есть такое понятие, как область Хаббла. Так называют часть обозримого космоса, которую мы можем увидеть с помощью своих технологий. Она составляет примерно 13,8 миллиарда световых лет. Так как возраст Вселенной составляет примерно столько же, свет из ее более далеких областей до нас еще попросту не дошел. Область Хаббла рано или поздно расширится, увеличив количество наблюдаемых нами звездных систем.
Мультивселенная
С обозримыми границами Вселенной разобрались, но что же находится за их пределами? Если космическое пространство представляет собой ограниченную область, пусть и очень большую, то почему рядом с ней не может существовать других подобных территорий? Что если наша Вселенная не единственная в своем роде, а лишь одна из бесчисленного множества?
Мультивселенная
Гипотеза Мультивселенной говорит о том, что каждая отдельная Вселенная представляет собой нечто вроде пузыря, формирующегося из вещества во время Большого взрыва. Все миры рождаются, эволюционируют и в конечном итоге умирают, сменяясь новыми. Одним из наиболее известных сторонников данной гипотезы был Стивен Хокинг. Также ее поддерживают, пожалуй, самый известный популяризатор науки астрофизик Нил Деграсс Тайсон, один из первых людей в области квантовых вычислений Дэвид Дойч, Алан Харви Гут – первый физик, предложивший идею космической инфляции, и Брайан Рэндолф Грин – известный популяризатор теории струн.
Стивен Хокинг
В Мультивселенной существует бесконечное множество «пузырей», которые работают по одним и тем же законам природы, но находятся в разных состояниях. Параллельные Вселенные никак не зависят друг от друга и практически не взаимодействуют.
Эта гипотеза на данном этапе даже не совсем научная. Она предполагает, что может находиться за пределами Вселенной, но доказать или хотя бы попытаться экспериментально проверить не может. Поэтому пока это скорее философский вопрос, чем научный. Но, если предположение окажется правдой, это будет означать, что, помимо нашей, существует огромное количество Вселенных с конечными размерами и продолжительностью жизни.
Полное ничто
Космос постоянно расширяется. Это утверждение официально признано современным научным сообществом. Но даже ученые не могут сказать, будет ли это продолжаться вечно и до каких масштабов может увеличиться Вселенная.
Некоторые теоретики предполагают, что наш мир имеет свои границы, но за их пределами нет ничего. Согласно такой гипотезе, когда Вселенная заканчивается, остается лишь абсолютная пустота, полное ничего, в котором не действуют ни одни законы физики. Туда не доходит свет, его нельзя ощутить, увидеть, там нет времени и пространства. Гипотеза гласит, что космос представляет собой замкнутый шар, который парит в бесконечном ничего, к которому не применимы ни одни из знакомых нам физических параметров.
Теория абсолютной пустоты
Осознать и принять абсолютную пустоту довольно сложно для человеческого мозга. Даже если гипотеза верна, мы не сможем представить, как выглядит полное ничто. Черный фон? Белый? Матрица? Гадать можно долго, но вряд ли мы действительно сможем это представить.
Голограмма
Гипотеза довольно сложная, и ее даже понять тяжело, не то что доказать. Если вдруг она окажется правдой, это будет означать, что все законы природы, работающие в трехмерном мире, на самом деле так не работают и являются лишь искажением. Если за пределами нашей Вселенной лежит первичная плоскость, то мы даже представить себе не сможем, как в ней все устроено. Наряду с абсолютной пустотой и Мультивселенной эта теория, как и сотни других, являются больше философскими, чем научными. А что на самом деле находится за пределами Вселенной мы вряд ли когда-нибудь узнаем.
Что находится за пределами Вселенной? Устройство Вселенной. Тайны космоса
Что находится за пределами Вселенной? Этот вопрос слишком сложный для человеческого понимания. Это связано с тем, что в самую первую очередь необходимо определить ее границы, а это далеко не просто.
Общепринятый ответ учитывает только наблюдаемую Вселенную. Согласно ему размеры определяются скоростью света, потому что возможно видеть только свет, который излучают или отражают объекты в космосе. Невозможно заглянуть дальше, чем наиболее отдаленный свет, который путешествует все время существования Вселенной.
Пространство продолжает увеличиваться, но все еще конечно. Его размер иногда упоминается как объем или сфера Хаббла. Человек во Вселенной, вероятно, никогда не сможет узнать, что за пределами ее границ. Так что для всех исследований это единственное пространство, с которым когда-либо придется взаимодействовать. По крайней мере, в ближайшее время.
Величие
Всем известно, что Вселенная велика. На сколько миллионов световых лет она простирается?
Нас все еще волнует вопрос, что находится за пределом Вселенной, которую можно наблюдать. Астрономы допускают, что космос бесконечен. «Вещество» в нем (энергия, галактики и т. д.) распределено точно таким же образом, как и в наблюдаемой Вселенной. Если это действительно так, тогда появляются разные аномалии того, что находится на краю.
За пределами объема Хаббла расположено не просто больше разных планет. Там можно найти вообще все, что только может существовать. Если продвинуться достаточно далеко, можно даже найти другую солнечную систему с Землей, идентичной во всех отношениях, за исключением того, что у вас была на завтрак каша вместо яичницы. Или завтрак отсутствовал вовсе. Или, допустим, вы встали пораньше и ограбили банк.
На самом деле космологи считают, что, если пройти достаточно далеко, то можно найти еще одну сферу Хаббла, которая совершенно идентична нашей. Большинство ученых считают, что известная нам Вселенная имеет границы. Что за их пределом, остается величайшей загадкой.
Космологический принцип
Это понятие означает, что независимо от места и направления наблюдателя, каждый видит одну и ту же картину Вселенной. Разумеется, это не относится к исследованиям меньшего масштаба. Такая однородность пространства вызвана равноправием всех его точек. Обнаружить это явление можно лишь в масштабах скопления галактик.
Что-то, сродни этому понятию было впервые предложено сэром Исааком Ньютоном в 1687 году. И впоследствии, в 20 веке, это же было подтверждено наблюдениями других ученых. Логично, если все возникло из одной точки Большого взрыва, а затем расширилось до Вселенной, то будет оставаться довольно однородным.
Расстояние, на котором можно наблюдать за космологическим принципом, чтобы найти это очевидное равномерное распределение материи, занимает примерно 300 миллионов световых лет от Земли.
Однако все изменилось в 1973 году. Тогда была обнаружена аномалия, нарушающая космологический принцип.
Великий аттрактор
Огромная концентрация массы обнаружилась на расстоянии 250 миллионов световых лет, близ созвездий Гидры и Центавра. Ее вес настолько велик, что его можно было бы сравнить с десятком тысяч масс Млечных Путей. Эта аномалия считается галактическим сверхскоплением.
Этот объект получил название Великий аттрактор. Его гравитационная сила настолько сильна, что воздействует на другие галактики и их скопления в течение нескольких сотен световых лет. Он долгое время оставался одной из самых больших тайн космоса.
Темная энергия
Согласно Закону Хаббла, все галактики должны двигаться равномерно друг от друга, сохраняя космологический принцип. Однако в 2008 г. появилось новое открытие.
Wilkinson Microwave Anisotropy Probe (WMAP) обнаружил большую группу кластеров, которые двигались в одном направлении со скоростью до 600 миль в секунду. Все они держали путь к небольшой области неба между созвездиями Центавра и Паруса.
Этому нет никакой очевидной причины, и, поскольку это было необъяснимое явление, его назвали «темной энергией». Она вызвана чем-то вне пределов наблюдаемой Вселенной. В настоящее время есть только догадки о ее природе.
Если скопления галактик тянутся к колоссальной черной дыре, то их движение должно ускоряться. Темная энергия указывает на постоянную скорость космических тел в миллиарды световых лет.
Это означало бы, что устройство Вселенной не является однородным. Что касается самих структур, они могут быть буквально любыми, от агрегатов материи и до энергии в масштабах, которые едва можно представить. Возможно даже, что это направляющие гравитационные силы из других Вселенных.
Бесконечные пузыри
Сразу после него, до момента начала инфляции Вселенной, возникла своего рода «космическая пена», существующая как скопление «пузырей». Один из объектов этого вещества внезапно расширился, со временем став Вселенной, известной сегодня.
Таким образом, «темная энергия» воспринимается как первое свидетельство существования другой Вселенной, или даже «Мультивселенной».
В этом сценарии пространство бесконечно, и каждый пузырь также не имеет границ. Даже если можно нарушить рубеж одного из них, пространство между ними все еще расширяется. Со временем будет невозможно добраться до следующего пузыря. Такое явление до сих пор остается одной из величайших тайн космоса.
Черная дыра
Теория, предложенная физиком Ли Смолином, предполагает, что каждый подобный космический объект в устройстве Метагалактики вызывает образование нового. Стоит только представить сколько черных дыр во Вселенной. Внутри каждой действуют физические законы, отличные от тех, что были у предшественника. Подобная гипотеза была впервые изложена в 1992 году в книге «Жизнь Космоса».
Экстремальные условия внутри разрушенной черной дыры приводят к небольшим случайным изменениям основных физических сил и параметров в дочерней Вселенной. У каждого из них есть отличные от родительской характеристики и показатели.
Существование звезд является предпосылкой для формирования жизни. Это связано с тем, что углерод и другие сложные молекулы, обеспечивающие жизнь, создаются именно в них. Поэтому для формирования существ и Вселенной нужны одни и те же условия.
Критика космического естественного отбора как научной гипотезы заключается в отсутствии прямых доказательств на данном этапе. Но следует иметь в виду, что с точки зрения убеждений он не хуже, чем предлагаемые научные альтернативы. Нет подтверждений того, что находится за пределами Вселенной, будь это Мультивселенная, теория струн или циклическое пространство.
Множество параллельных Вселенных
Эта идея кажется чем-то, что мало относится к современной теоретической физике. Но мысль о существовании Мультиверса уже давно считается научной возможностью, хотя все еще вызывает активные дискуссии и деструктивные споры среди физиков. Этот вариант полностью разрушает представление о том, сколько Вселенных в космосе.
Важно иметь в виду, что Мультиверс не теория, а скорее следствие современного понимания теоретической физики. Это отличие имеет решающее значение. Никто не махнул рукой и не сказал: «Пусть будет Мультивселенная!». Эта идея была получена из текущих учений, таких как квантовая механика и теория струн.
Мультиверс и квантовая физика
Многим известен мысленный эксперимент «Кот Шредингера». Его суть заключается в том, что Эрвин Шредингер, австрийский физик-теоретик, указывал на несовершенство квантовой механики.
Все это кажется невозможным просто потому, что человеческое восприятие не может этого осознать.
Но это вполне реально в соответствии со странными правилами квантовой механики. Пространство всех возможностей в ней огромно. Математически квантовомеханическое состояние представляет собой сумму (или суперпозицию) всех возможных состояний. В случае «Кота Шредингера», эксперимент представляет собой суперпозицию «мертвых» и «живых» положений.
Теория струн
Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.
Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.
Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.
Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.
Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.
Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.
Последствия Большого взрыва
Во время самого раннего устройства Вселенной был период ускоренного расширения, называемый инфляцией. Первоначально она объясняла, почему сфера Хаббла почти однородна по температуре. Однако инфляция также предсказала спектр флуктуаций температуры вокруг этого равновесия, который позднее был подтвержден несколькими космическими аппаратами.
Хотя точные детали теории все еще горячо обсуждаются, инфляция широко принимается физиками. Однако следствие этой теории состоит в том, что должны быть другие объекты во Вселенной, которые все еще ускоряются. Из-за квантовых флуктуаций пространства-времени некоторые ее части никогда не достигнут конечного состояния. Это означает, что пространство будет вечно расширяться.
Этот механизм генерирует бесконечное количество Вселенных. Комбинируя этот сценарий с теорией струн, есть вероятность, что каждая из них обладает другой компактификацией дополнительных размеров и, следовательно, имеет разные физические законы Вселенной.
Поскольку столкновение с другими Вселенными должно происходить в определенном направлении, ожидается, что любые вмешательства нарушают однородность.
Некоторые ученые ищут их через аномалии в космическом микроволновом фоне, послесвечении Большого Взрыва. Другие в гравитационных волнах, которые рябят в пространстве-времени по мере прохождения массивных объектов. Эти волны могут непосредственно доказывать существование инфляции, которая в конечном итоге усиливает поддержку теории Мультивселенной.