Что находится в микроскопе

МИКРОСКОП

Полезное

Смотреть что такое «МИКРОСКОП» в других словарях:

микроскоп — микроскоп … Орфографический словарь-справочник

МИКРОСКОП — (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия

микроскоп — а, м. microscope m.<гр. mikros малый + skopeo смотрю. Оптический прибор с системой сильно увеличивающих стекол для рассматривания предметов или частей их, не видимых вооруженным глазом. БАС 1. Микроскоп, мелкозор. 1790. Кург. // Мальцева 54.… … Исторический словарь галлицизмов русского языка

МИКРОСКОП — • МИКРОСКОП (Microscopus), небольшое созвездие южного неба. Самая яркая его звезда имеет звездную величину 4,7. • МИКРОСКОП, оптический прибор, позволяющий получить увеличенное изображение мелких предметов. Первый микроскоп был создан в 1668 г.… … Научно-технический энциклопедический словарь

микроскоп — микротекстил, ортоскоп Словарь русских синонимов. микроскоп сущ., кол во синонимов: 11 • биомикроскоп (1) • … Словарь синонимов

МИКРОСКОП — МИКРОСКОП, а, муж. Увеличительный прибор для рассматривания предметов, неразличимых простым глазом. Оптический м. Электронный м. (дающий увеличенное изображение с помощью пучков электронов). Под микроскопом (в микроскоп) рассматривать что н. |… … Толковый словарь Ожегова

МИКРОСКОП — (от греч. mikros малый и skopeo смотрю), оптич. прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), не видимых невооружённым глазом. Различные типы М. предназначаются для обнаружения л изучения бактерий,… … Физическая энциклопедия

МИКРОСКОП — МИКРОСКОП, микроскопа, муж. (от греч. mikros маленький и skopeo смотрю) (физ.). Оптический прибор, с системой сильно увеличивающих стекол, для рассматривания предметов, которые не могут быть видимы невооруженным глазом. Толковый словарь Ушакова.… … Толковый словарь Ушакова

микроскоп — оптический прибор для получения увеличенного изображения объектов, не различимых невооруженным глазом. В микробиол. используется световой и электронный М. Один из основных показателей М. – разрешение – возможность различать два соседних объекта… … Словарь микробиологии

Источник

Микроскоп

Что находится в микроскопеНаверняка многие слышали о таком предмете, как микроскоп. А некоторые даже знакомы с ним не понаслышке. Однако мало кто представляет что существует разное количество видов данного устройства, предназначенных для различных функций. Что же такое микроскоп и микроскопия? Какие виды микроскопов существуют и что позволяют делать? Ответы на эти вопросы можно найти в предложенной статье.

История возникновения

Микроскоп представляет собой прибор, с помощью которого можно значительно увеличить изображение, детально изучить строение и структур рассматриваемого объекта, а также замерить его детали, плохо различимые или вообще невидимые невооруженным глазом.

Методы и технологии, позволяющие использовать данный прибор в практических целях носят название микроскопия.

Самыми первыми изобретенными устройствами были оптические микроскопы. К тому же невозможно с уверенностью сказать о том, кому принадлежат лавры такого изобретения. В 1538 году венецианский врач Джироламо Фракасторо предложил использовать комбинацию из двух линз для достижения наибольшего увеличения. А самые ранние упоминания именно о микроскопе датируются 1590 годом и уходит корнями в голландский город Мидделбург, где работали двое мастеров Иоанн Липперсгей и Захарий Янсен, которые изготавливали очки.

Примерно в 1624 году свой первый составной прибор под названием «оккиолино», что в переводе с итальянского означает «маленький глаз», представил итальянский физик и астроном Галилео Галилей. И только спустя год его товарищ Джованни Фабер предложил называть полученное изобретение микроскопом.

Виды микроскопов

На сегодняшний момент существует множество разновидностей данного прибора. Микроскопы бывают: оптические и электронные, рентгеновские и сканирующие зондовые. Есть также дифференциальный интерференционно-контрастный микроскоп.

Оптические приборы в свою очередь делятся на ближнепольные, конфокальные и двухфотонные лазерные микроскопы. Электронные подразделяются на просвечивающие и растровые устройства. Сканирующие представляют собой совокупность атомно-силовых и туннельных микроскопов, а рентгеновские приборы бывают лазерными, отражательными и проекционными.

Естественной оптической системой является глаз человека. При этом она характеризуется точным разрешением. Нормальное разрешение для обычного глаза составляет примерно 0,2 мм. Это характерно при удалении объекта на расстояние оптимального видения, которое составляет 250 мм. Стоит заметить, что размеры животных и растительных клеток, различных микроорганизмов, деталей структуры металлов и разного рода сплавов, а также мелких кристаллов намного меньше нормального разрешения для человеческого глаза.

Ученые примерно до середины прошлого века использовали в работе только видимое оптическое излучение, диапазоном от четырехсот до семисот нанометров. Иногда применялись приборы с ближним ультрафиолетом. Получается, что оптические микроскопы способны различать вещества с расстоянием между элементами до 0,20 мкм, а это значит, что он может добиться максимального увеличения 2000 крат.

Что находится в микроскопеВ электронных устройствах для увеличения используется пучок электронов, обладающих волновыми свойствами. При этом электроны достаточно легко можно сфокусировать при помощи электромагнитных линз, потому что они представляют собой заряженные частицы. К тому же электронное изображение не составит труда перевести в видимое.

У электронных устройств разрешающая способность в несколько тысяч раз превышает разрешение светового оптического микроскопа. А в современных приборах она может быть даже менее десяти нанометров.

Сканирующие зондирующие микроскопы – это класс приборов, работа которых основана на сканировании зондом различных поверхностей. Это достаточно новые устройства, изображение на которых получается при помощи фиксирования соприкосновений между поверхностью и зондом. На данный момент в таких устройствах удалось добиться фиксации взаимодействия зонда с некоторыми молекулами и атомами, что выводит сканирующий зондирующий микроскоп на уровень электронных приборов. А в некоторых показателях такие устройства даже превосходят их.

Рентгеновские микроскопы представляют собой прибор, позволяющий исследовать очень малые объекты, величины которых можно сопоставить с длиной рентгеновской волны. Работа такого прибора основана на электромагнитном излучении, имеющим длину волны до одного нанометра. Разрешающая способность рентгеновских устройств намного выше оптических, но ниже электронных микроскопов.

Строение микроскопа

Стандартный оптический прибор имеет в своем строении следующие детали:

Что находится в микроскопеОптическая система такого устройства представляет собой объективы, расположенные на револьверной головке, окуляры и в некоторых случаях призменный блок. При помощи оптической системы как раз и формируется изображение изучаемого образца на сетчатке глаза. Причем это изображение будет перевернутым.

В настоящее время многие детские микроскопы содержат в себе линзу Барлоу, применение которой позволяет добиться плавного увеличения изображения до 1000 крат и выше. Однако качество изображения при этом существенно страдает, что делает использование этой линзы в таких устройствах достаточно сомнительным.

В профессиональных устройствах для изменения увеличения используют только различные комбинации качественных объективов и окуляров. И уж конечно, в таких приборах никогда не будет использовать линза столько сомнительного качества.

Механическая система микроскопа представляет собой штатив, тубус, револьверную головку, механизмы фокусировки и предметный столик.

Для фокусировки изображения применяются механизмы фокусировки. Макрометрический винт применяют в работе с небольшими увеличениями, а микрометрический используется при высоких увеличениях. Стандартные школьные или детские микроскопы обычно комплектуются лишь макрометрическим винтом грубой фокусировки. Для лабораторных исследований в обязательном порядке понадобится и механизм тонкой фокусировки. Оптические устройства могут иметь раздельные механизмы грубой и точной фокусировки, а также содержать в себе коаксиальные винты микро и макрометрической регулировки фокуса.

Фокусировка прибора осуществляется при помощи перемещения предметного столика или тубуса устройства в вертикальной плоскости.

Предметный столик необходим для расположения на нем объекта. Можно выделить несколько их разновидностей:

Более комфортным для работы считается координатный предметный столик, которые позволяет перемещать образец для исследования в горизонтальной плоскости.

Объективы микроскопа располагаются непосредственно на револьверной головке. Ее вращение позволяет выбрать какой-либо из объективов, тем самым меняя увеличение. Профессиональные устройства оснащены как правило съемными объективами, которые вкручиваются в револьверную головку. Дешевые же варианты микроскопов имеют встроенные объективы.

Тубус микроскопа содержит в себе окуляр. В устройствах с тринокулярной или бинокулярной насадкой существует возможность регулировки расстояния между зрачками, а также коррекции диоптрий, что позволяет подстроить микроскоп под индивидуальные особенности каждого наблюдателя. В детских устройствах в тубусе помимо окуляра может находиться также линза Барлоу.

Осветительная система оптического устройства представляет собой диафрагму, конденсор и источник света.

Источник света может быть как внешний, так и встроенный. Стандартный микроскоп обычно включает в себя нижнюю подсветку. В некоторых детских устройствах иногда используют боковую подсветку, но она не несет за собой никакого практического эффекта.

Конденсор и диафрагма используется для регулировки освещения микроскопа. Конденсоры могут быть однолинзовыми, двухлинзовыми или трехлинзовыми. При опускании или поднятии конденсора происходит либо рассеивание, либо конденсирование света, который освещает исследуемый образец.

Диафрагма представлена в двух вариантах: ирисовая, с плавным изменением диаметра, и ступенчатая, состоящая из нескольких отверстий разных диаметров. Соответственно увеличивая или уменьшая диаметр светового отверстия можно ограничить или увеличить поток света, льющегося на образец. Некоторые конденсоры оснащаются фильтродержателем, в который могут вставляться различные светофильтры.

Выводы

Микроскоп – это оптический прибор, позволяющий многократно увеличивать изображение исследуемого предмета, что позволяет изучать вещества, невидимые невооруженным глазом. В настоящий момент существует много различных видов современных устройств, отличающихся между собой разрешительной способностью, что позволяет различать и изучать очень малые предметы.

Источник

Устройство микроскопа, строение микроскопа

В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.

Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.

Что находится в микроскопе

Рисунок 1. Устройство микроскопа

К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании микроскопа находится также гнездо для зеркала или встроенный осветитель.

В большинстве современных микроскопов фокусировка осуществляется путем вертикального перемещения предметного столика с помощью макро- и микромеханизма при неподвижном тубусодержателе. Это позволяет установить на тубусодержатель различные насадки (микрофото и т.п.). В некоторых конструкциях микроскопов, предназначенных для работы с микроманипулятором, фокусировка осуществляется вертикальным перемещением тубусодержателя при неподвижном предметном столике.

Что находится в микроскопе
Рис. 2. Револьверный держатель объективов

Существуют различные взаимозаменяемые конструкции участка тубуса, несущего окуляры (прямой и наклонный) и различающиеся по количеству окуляров (окулярные насадки):

Помимо тубусодержателя с тубусом к механической части микроскопа относятся:

Источник

Строение и виды микроскопов

Микроскоп это инструмент, который позволяет людям видеть те вещества и организмы, которые невозможно наблюдать невооруженным глазом. Микроскопы в своей базовой модели содержит одну или несколько линз, что облегчает увеличение изображений, удерживаемых в фокальной плоскости объектива.

Первый микроскоп был изобретен в 1590 году и представлял собой вид оптического устройства.

История

История микроскопа может быть прослежена с конца 16-го или начала 17-го века. До сих пор ведутся споры о том, кто же на самом деле изобрел этот инструмент. Согласно новой всемирной энциклопедии, считается что прибор был предоставлен производителями очков из Нидерландов: Хансу Липперши, Хансу и Захариасу Янсену.

Также Галилео Галилей в 1600-х годах изобрел устройство, внесшее свой вклад в область микроскопии. В его устройстве использовались линзы вогнутой и выпуклой формы.

Этот инструмент становился все более сложным с появлением науки и техники и теперь доступен в различных типах, которые используются для многих целей.Что находится в микроскопе

Наиболее распространенным среди них является самый старый и простейший тип микроскопа, называемый оптическим или световым микроскопом, который имеет три типа — простой, сложный свет и стерео.

Типы микроскопов

От самого первого до инструмента, доступного сегодня, есть большая разница в технологии. Сегодня существуют различные виды микроскопов, которые способны увеличить объект в значительной степени. Они различаются по увеличению, разрешению, способу освещения, типу объекта, формированию изображения, глубине резкости и т. д.

Составной

Вид микроскопа – составной, обыкновенно используется в учебных заведениях и входит в категорию чаще всего применяемых в биологии. Он имеет две линзы, а именно объектив и окулярную линзу и обеспечивает увеличение 1500-х. Объектив окуляра имеет увеличение 10-х или 15-х. Инструмент используется для наблюдения за бактериями, простейшими, различными клетками и т. д.
Некоторые используют естественный свет, в то время как другие имеют осветитель, прикрепленный к основанию, который действует как источник света.

Образец помещают на площадку и наблюдают через линзы, которые имеют различную силу увеличения.

Световой

Вид микроскопа – световой, также называют оптическим. Объектив окуляра 10-х или 16-х и обеспечивает увеличение до 1500-х. Применяют при изучении анатомии и физиологии мельчайших существ.

Препаровальный

Его еще называют стереомикроскопом. Его сила увеличения меньше, чем другие типы микроскопов, но он дает трехмерную картину. Из-за низкой увеличительной мощности они используются для наблюдения небольших объектов. Необходимы в хирургических операциях, вскрытии, криминалистике и т. д.

Цифровой

Тип микроскопа – цифровой, имеет цифровую камеру, которая крепится к монитору. Он имеет оптическую линзу, а также датчики и обеспечивает увеличение в 1000 раз. Используется для получения снимков объекта с высоким разрешением.

Электронный

Электронный имеет высокое разрешение чем другие типы микроскопов. Строение устройства сложное и имеет схему испускающую пучок электронов, которые сталкиваются с объектом. Это один из лучших видов, используемых для изучения клеток.

Они бывает двух типов: сканирующий электронный и просвечивающий. Некоторые работают в вакууме, что снижает вероятность столкновения электронов с другими молекулами воздуха.

Просвечивающий электронный

Обеспечивает достаточно высокий уровень увеличения используя электронный луч дающий 2-мерное изображение. Электроны ударяют в объект, который делает его видимым. Объект виден темным на светлом фоне.

Сканирующий электронный

Это разновидность типа электронного микроскопа. Он имеет ниже увеличение, чем просвечивающий электронный, но может получить трехмерное изображение.

Фазовый контрастный

Эти виды микроскопов работают с помощью специального светового конденсатора. Свет падает на объект с разной скоростью. В этом устройстве можно увидеть неокрашенные и живые микроорганизмы. Также можно наблюдать различные части клетки, такие как митохондрии,лизосомы, тела Гольджи, ядра и т. д.

Люминесцентный

Этот тип микроскопа работает с помощью ультрафиолетового света. Ультрафиолетовый свет освещает образец и возбуждает электроны объекта, которые можно увидеть в разных цветах. Для подсветки объекта используются флуоресцентные красители. Ультрафиолетовый свет увеличивает разрешение, что полезно для идентификации микроорганизмов.

Функция и строение инструмента

Микроскоп является важным инструментом в мире биологических наук. Это инструмент для научного образования и научных исследований. Без него человек никогда не сможет понять мир микроорганизмов.
Функция состоит в том, чтобы видеть вещи на разных уровнях или увеличениях (например, клетки, которые нельзя увидеть невооруженным глазом).Что находится в микроскопе

Чтобы лучше понять функцию и основную структуру рассмотрим строение устройства:

Окуляр

Именно через окуляр мы смотрим на образец, помещенный на подмостки микроскопа. Он содержит две или более линз. Наиболее распространенное увеличение для окуляра 10-х однако они также могут быть 2-x и 5-x. Глазная часть съемная и может быть заменена другой частью с другим увеличением.

Держатель окуляра

Просто соединяет окуляр с корпусом обычно с помощью установочного винта, чтобы пользователь мог легко менять окуляр для изменения увеличительной мощности.

Линза объектива

Основные линзы составного микроскопа и могут иметь увеличение 4-x, 5-x, 10-x, 20-x, 40-x, 50-x и 100-x. Значения увеличения обычно гравируются на стороне каждой линзы. Составная часть к которой крепятся эти линзы может поворачиваться вручную, чтобы получить объектив нужного увеличения для фокусировки на объекте.

Опора и наконечник

Опора соединяет линзовый аппарат с основанием. Наконечник соединяет объектив с корпусом. С помощью вращающейся носовой части можно прикрепить до пяти различных степеней увеличения при повороте в нужное положение и использовании с существующим окуляром.

Механизм фокусировки

Регулировочные ручки позволяют производить грубые или тонкие (сотые доли миллиметра) изменения фокусировки ступени или объектива. Есть две регулировочные ручки — ручка тонкой регулировки и ручка грубой регулировки, которые улучшают фокус линз. Ручка грубой регулировки помогает улучшить фокус на небольшом увеличении, в то время как ручка тонкой регулировки помогает регулировать фокус линз с более высоким увеличением.

Объект наблюдения

Инструмент имеет платформу на которой размещается подготовленный объект для просмотра. Объект обычно удерживается на месте подпружиненными металлическими зажимами. Более сложные мощные микроскопы имеют механические ступени, которые позволяют зрителю плавно перемещать платформу вдоль оси X (горизонтальный путь) и Y (вертикальный путь). Механическая ступень является обязательным условием для проведения высокомощных наблюдений.

Источник света

Самым простым является осветительное зеркало, которое отражает окружающий источник света для освещения объекта. Многие типы микроскопов имеют электрический источник света для более легкого и последовательного освещения. Как правило, электрические источники света являются либо вольфрамовыми, либо флуоресцентными, причем флуоресцентные предпочтительны, поскольку они работают при более низкой температуре. Большинство устройств освещают снизу, через объект, к объективу. С другой стороны, стереомикроскопы используют как верхнее, так и нижнее освещение.

Увеличение

Увеличение микроскопа полезно при изучении биологических структур, особенно на клеточном уровне. Увеличение масштаба для четкого наблюдения того, что мы не можем видеть невооруженным глазом, позволяет нам исследовать формы жизни, как растительные, так и животные, и понять их функции.

Увеличение на микроскопе означает величину или степень увеличения наблюдаемого объекта. Он измеряется кратными числами, такими как 2-x, 4-x и 10-x, что указывает на то, что объект увеличен в два раза, в четыре раза или в 10 раз соответственно. Увеличение должно быть тщательно отрегулировано пропорционально расстоянию.

Чем выше увеличение, тем ближе объектив должен быть расположен к наблюдаемому объекту. Большинство микроскопов позволяют регулировать расстояние между объективом и объектом, а также обеспечивают заранее заданные положения по умолчанию, которые помещают линзы с более высоким увеличением ближе к объекту.

Увеличение регулируется как на окулярах, так и на линзах большинства типов микроскопов. Наиболее распространенными линзовыми увеличениями для типичных лабораторных микроскопов являются 4-x, 10-x и 40-x, хотя существуют альтернативы с более меньшим или большим.

Почему микроскоп увеличивает изображение?

Самый простой ответ, почему микроскоп увеличивает изображение, заключается в том, что он построен таким образом, что прибор изменяет направление световых лучей определенным образом, чтобы увеличить изображение объекта.

Одна вещь, которую нужно знать об уровнях увеличения, заключается в том, что увеличение можно изменять как на окулярах, так и на линзе устройства. Использование увеличения позволяет исследователям и ученым изучать биологические структуры на их клеточном уровне.

Разрешающая способность

Разрешение микроскопа (разрешающая способность) определяется как расстояние между двумя объектами в точке, в которой они все еще кажутся двумя различными объектами. При плохом разрешении две точки смываются в одну, чем при просмотре под устройством с более высоким разрешением. Разрешающая способность может варьироваться от различных типов микроскопа и зависит от ряда условий.

Разрешение микроскопа — это способность четко определять две отдельные точки, или объекты, как единичные, различающиеся сущности. Если объекты расположены ближе друг к другу, чем это соответствует разрешению, они размываются вместе, что делает невозможным различение.
Некоторые ученые-микроскописты рекомендуют 0,2 мкм=200 Нм в качестве наилучшего разрешения для оптического вида микроскопа.

Влияние длины волны и интенсивности света

Разрешающая способность стандартного светового микроскопа зависит от длины волны света, освещающего объект: чем короче длина волны, тем выше разрешение. Таким образом, свет, стремящийся к синему концу спектра видимого света, даст более высокое разрешение изображения, чем свет, стремящийся к красному концу спектра.

Разрешение стандартного светового микроскопа также будет зависеть от количества или интенсивности света, достигающего изображения.

Источник

Устройство и основные части оптического микроскопа

Содержание

В отличие от лупы, микроскоп имеет, как минимум, две ступени увеличения. Функциональные и конструктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Здесь мы рассмотрим устройство микроскопа и постараемся описать основные части микроскопа.

Функционально устройство микроскопа делится на 3 части:

1. Осветительная часть

Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах (например, биологические, поляризационные и др.) и перед объектом над объективом в инвертированных. Подробнее о видах световых микроскопов.

Осветительная часть конструкции микроскопа включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

2. Воспроизводящая часть

Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа.
Воспроизводящая часть включает объектив и промежуточную оптическую систему.

Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

3. Визуализирующая часть

Предназначена для получения реального изображения объекта на сетчатке глаза, фотоплёнке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).
Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой).
Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами, которые работают как лупа).
Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерами для цифровых камер.

Схема расположения основных элементов оптического микроскопа

Что находится в микроскопе

С конструктивно-технологической точки зрения, микроскоп состоит из следующих частей:

1. Механическая часть микроскопа

Устройство микроскопа включается в себя штатив, который является основным конструктивно-механическим блоком микроскопа. Штатив включает в себя следующие основные блоки: основание и тубусодержатель.

Основание представляет собой блок, на котором крепится весь микроскоп и является одной из основных частей микроскопа. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.

Разновидности оснований микроскопа:

Тубусодержатель представляет собой блок, часть конструкции микроскопа, на котором закрепляются:

В микроскопах могут использоваться стойки для крепления узлов (например, фокусировочный механизм в стереомикроскопах или крепление осветителя в некоторых моделях инвертированных микроскопов).

Чисто механическим узлом микроскопа является предметный столик, предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

2. Оптика микроскопа (оптическая часть)

Оптические узлы и принадлежности обеспечивают основную функцию микроскопа — создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

— представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования. Объективы являются одними из основных частей микроскопа. Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, которое дает объектив, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).

Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

Классификация объективов

Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.

По принципу расчетного качества изображения объективы могут быть:

Ахроматические объективы.

Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486–656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично — сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.

Апохроматические объективы.

Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

Полуапохроматы или микрофлюары.

Современные объективы, обладающие промежуточным качеством изображения.

Планобъективы.

В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.

Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).

По параметрическим признакам объективы делятся следующим образом:

Высота — расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.

По конструктивно-технологическим признакам существует следующее разделение:

По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:

Иммерсия (от лат. immersio — погружение) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.
Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:

Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

Иммерсионные объективы. Качество изображения, параметры и оптическая конструкция иммерсионных объективов рассчитываются и выбираются с учетом толщины слоя иммерсии, которая рассматривается как дополнительная линза с соответствующим показателем преломления. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол). Числовая апертура безыммерсионного (сухого) объектива не превышает 1,0 (разрешающая способность порядка 0,3 мкм для основной длины волны); иммерсионного — доходит до 1,40 в зависимости от показателя преломления иммерсии и технологических возможностей изготовления фронтальной линзы (разрешающая способность такого объектива порядка 0,12 мкм).
Иммерсионные объективы больших увеличений имеют короткое фокусное расстояние — 1,5–2,5 мм при свободном рабочем расстоянии 0,1–0,3 мм (расстояние от плоскости препарата до оправы фронтальной линзы объектива).

Маркировка объективов.

Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

Окуляры

Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной — ближайшей к глазу наблюдателя — и полевой — ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.

Окуляры классифицируются по тем же группам признаков, что и объективы:

Осветительная система является важной частью конструкции микроскопа и представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива.
Осветительная система микроскопа проходящего света состоит из двух частей — коллектора и конденсора.

Коллектор.
При встроенной осветительной системе проходящего света коллекторная часть расположена вблизи источника света в основании микроскопа и предназначена для увеличения размера светящегося тела. Для обеспечения настройки коллектор может быть выполнен подвижным и перемещаться вдоль оптической оси. Вблизи коллектора располагается полевая диафрагма микроскопа.

Конденсор.
Оптическая система конденсора предназначена для увеличения количества света, поступающего в микроскоп. Конденсор располагается между объектом (предметным столиком) и осветителем (источником света).
Чаще всего в учебных и простых микроскопах конденсор может быть выполнен несъемным и неподвижным. В остальных случаях конденсор является съемной частью и при настройке освещения имеет фокусировочное перемещение вдоль оптической оси и центрировочное перемещение, перпендикулярное оптической оси.
При конденсоре всегда находится осветительная апертурная ирисовая диафрагма.

Конденсор является одним из основных элементов, обеспечивающих работу микроскопа по различным методам освещения и контрастирования:

Классификация конденсоров близка по группам признаков к объективам:

Конденсор Аббе — не исправленный по качеству изображения конденсор, состоящий из 2-х неахроматических линз: одной — двояковыпуклой, другой — плосковыпуклой, обращенной к объекту наблюдения (плоская сторона этой линзы направлена вверх). Апертура конденсора, А= 1,20. Имеет ирисовую диафрагму.

Апланатический конденсор — конденсор, состоящий из трех линз, расположенных следующим образом: верхняя линза — плосковыпуклая (плоская сторона направлена к объективу), далее следуют вогнуто-выпуклая и двояковыпуклая линзы. Исправлен в отношении сферической аберрации и комы. Апертура конденсора, А = 1.40. Имеет ирисовую диафрагму.

Ахроматический конденсор — конденсор, полностью исправленный в отношении хроматической и сферической аберрации.

Конденсор темного поля — конденсор, предназначенный для получения эффекта темного поля. Может быть специальным или переделан из обычного светлопольного конденсора путем установки в плоскости ирисовой диафрагмы конденсора непрозрачного диска определенного размера.

Маркировка конденсора.
На фронтальной части конденсора наносится маркировка числовой апертуры (осветительной).

3. Электрическая часть микроскопа

В современных микроскопах, вместо зеркал, используются различные источники освещения, питаемые от электрической сети. Это могут быть как обычные лампы накаливания, так и галогенные, и ксеноновые, и ртутные лампы. Также все большую популярность набирают светодиодные осветители. Они обладают значительными преимуществами перед обычными лампами, как например долговечность, меньшее энергопотребление и др. Для питания источника освещения используются различные блоки питания, блоки розжига и другие устройства, преобразующие ток из электрической сети в подходящий для питания того или иного источника освещения. Также это могут быть и аккумуляторные батареи, что позволяет использовать микроскопы в полевых условиях при отсутствии точки подключения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *