Что наблюдалось в опыте эрстеда взаимодействие двух параллельных проводников
Что наблюдалось в опыте эрстеда взаимодействие двух параллельных проводников
Какое явление наблюдалось в опыте Эрстеда?
1) взаимодействие двух параллельных проводников с током
2) взаимодействие двух магнитных стрелок
3) поворот магнитной стрелки вблизи проводника при пропускании через него тока
4) возникновение электрического тока в катушке при вдвигании в нее магнита
Опыт Эрстеда — это классический опыт, проведённый в 1820 году Эрстедом и являющийся первым экспериментальным доказательством воздействия электрических токов на магниты. помещал над магнитной стрелкой прямолинейный металлический проводник, направленный параллельно стрелке. При пропускании через проводник электрического тока стрелка поворачивалась перпендикулярно проводнику. При изменении направления тока стрелка разворачивалась на Аналогичный разворот наблюдался, если провод переносился на другую сторону, располагаясь не над, а под стрелкой. Верным является утверждение 3.
Правильный ответ указан под номером 3.
На рисунке показаны сечения двух параллельных длинных прямых проводников и направления токов в них. Сила тока I1 в первом проводнике больше силы тока I2 во втором. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор индукции магнитного поля этих проводников в точке А, расположенной точно посередине между проводниками? Ответ запишите словом (словами).
Первый проводник создаёт в точке А магнитное поле, направленное вверх, а второй проводник — направленное вниз. Поскольку точка А расположена точно посередине между проводниками и то модуль индукции магнитного поля, создаваемого первым проводником, больше модуля индукции магнитного поля, создаваемого вторым проводником. И значит, суммарный вектор индукции направлен вверх.
На рисунке изображены два прямых параллельных очень длинных провода с токами одинаковой силы. Как направлен вектор магнитной индукции поля (вправо, влево, к наблюдателю, от наблюдателя) в точке 3? Ответ запишите словом (словами).
Чтобы определить направление вектора магнитного поля, создаваемого проводником с током нужно воспользоваться правилом «правой руки»: мысленно обхватить проводник рукой так, чтобы отставленный большой палец указывал направление тока в проводнике, тогда направление остальных четырёх пальцев укажет направление вектора индукции магнитного поля. Магнитное поле создано двумя проводниками с током, применяем принцип суперпозиции полей.
Пользуясь двумя этими правилами и тем, что индукция магнитного поля, создаваемого проводником с током убывает с расстоянием, получаем, что в точке 3 вектор магнитной индукции направлен «к наблюдателю».
Ответ: к наблюдателю.
Три параллельных длинных прямых проводника 1, 2 и 3 перпендикулярны плоскости рисунка и пересекают её в вершинах равностороннего треугольника со стороной a. Токи в проводниках сонаправлены и равны I. Опираясь на законы электродинамики, определите направление вектора индукции результирующего магнитного поля в точке O — центре треугольника. Как изменится направление вектора индукции результирующего магнитного поля в точке O, если направление электрического тока в проводнике 3 изменить на противоположное?
Для поля, созданного прямым проводником с током, магнитные линии определяются правилом правой руки. Вектор магнитной индукции в точке O будет направлен по касательной к магнитной линии, а значит, перпендикулярно радиусу окружности вокруг данного проводника. Поскольку токи одинаковые и проводники равноудалены от точки O, то модули векторов напряженности равны между собой. Исходя из этих соображений, изобразим вектора магнитной индукции в точке O полей, созданных каждым проводником.
По принципу суперпозиции полей Из соображений геометрии вектора индукции первого и второго полей образуют с горизонталью угол Тогда в проекции на ось
Если в третьем проводнике поменять направление тока на противоположное, то изменится на противоположное направление вектора индукции поля вокруг третьего проводника.
Тогда проекция результирующего вектора индукции в точке О будет:
то есть увеличится.
Ответ: в первом случае равен 0, во втором случае направлен вправо и увеличился.
По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи I (см. рисунок). Как направлен вектор индукции создаваемого ими магнитного поля в точке С?
Вектор магнитной индукции в точке C есть сумма векторов магнитной индукции от двух проводников. Согласно правилу правой руки: «Если отведенный в сторону большой палец правой руки расположить по направлению тока, то направление обхвата провода четырьмя пальцами покажет направление линий магнитной индукции». Следовательно, вектор магнитной индукции от нижнего проводника направлен в точке C от нас, а вектор магнитной индукции от верхнего проводника — к нам. Однако модуль вектора магнитной индукции ослабевает по мере удаления от проводника. Таким образом, суммарный вектор магнитной индукции в точке C направлен к нам.
Направление поля можно искать, используя также правило буравчика: «Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции поля, создаваемого этим током».
Правильный ответ указан под номером 1.
если по проводникам текут разнонаправленные токи, то силы Ампера отталкивают проводники. И по правилу левой руки вектор магнитной индукции направлен от нас. Я не прав?
Про отталкивание Вы говорите все верно. А вот направление поля определяется правилом правой руки, а не левой.
Не совсем понятно, как расположена точка С. Если рассматривать в плоскости рисунка, то она находится прямо над проводниками, и решение соответствует на рисунку. Но если рассматривать в пространстве, то точка С может так же находиться за проводником, и в таком случае вектор индукции будет направлен вверх. В задании нужно уточнить, что точка С лежит в одной плоскости с проводниками.
Да, Вы конечно правы, но раз в задании ничего не сказано, то подразумевается, что точка С находится в плоскости рисунка.
Для повторения опыта Эрстеда учитель взял горизонтально расположенную магнитную стрелку, которая могла свободно вращаться на вертикальной игольчатой подставке, и прямой провод, подключённый к полюсам батареи. Учитель сначала расположил провод над магнитной стрелкой, как показано на рисунке, а через некоторое время переместил провод и расположил его под магнитной стрелкой.
Выберите все верные утверждения, соответствующие результатам этих экспериментов.
1) При расположении провода над магнитной стрелкой стрелка установилась параллельно проводу.
2) При расположении провода над магнитной стрелкой стрелка установилась перпендикулярно проводу.
3) При обоих вариантах расположения провода магнитная стрелка не меняла своего первоначального расположения.
4) При изменении расположения провода стрелка повернулась на 90°.
5) При изменении расположения провода стрелка повернулась на 180°.
Магнитное поле провода имеет вид концентрических окружностей. Магнитная стрелка всегда устанавливается по силовым линиям магнитного поля, следовательно, в данном эксперименте она каждый раз установилась перпендикулярно проводу.
Направление вектора индукции магнитного поля, созданного прямолинейным проводником с током, определяют с помощью правила буравчика (правого винта): если совместить направление поступательного движения буравчика с направлением тока, то направление вращения рукоятки будет совпадать с направлением вектора магнитной индукции. Это означает, что при перемещении провода, магнитная стрелка повернется на 180°.
Провод и магнитная стрелка находятся в параллельных плоскостях, стрелка не может повернуться перпендикулярно проводу.
Прямой угол скрещивания называют просто перпендикулярным, если скрещенность прямых не важна в решении задачи.
Отрицательно заряженную пылинку перемещают со скоростью V перпендикулярно прямому проводу, по которому течёт ток силой I (см. рисунок). В некоторый момент пылинка находится в точке A. Как в этот момент направлена относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) сила Лоренца, действующая на пылинку? Ответ запишите словом (словами).
Для начала найдем направление магнитного поля в точке А. Для этого можно воспользоваться правилом правой руки или буравчика «Если обхватить ладонью правой руки проводник так, чтобы отставленный большой палец был направлен вдоль тока, то оставшиеся четыре пальца укажут направление линий магнитного поля вокруг проводника». Мысленно проделав указанные действия, получаем, что в точке А вектор индукции магнитного поля направлен от наблюдателя.
Направление силы Лоренца для положительно заряженных частиц определяется по правилу левой руки. Нужно расположить ладонь так, чтобы четыре пальца указывали направление скорости частицы, магнитные линии входили в ладонь, тогда отставленный большой палец укажет направление силы Лоренца. Если частица имеет отрицательный заряд сила Лоренца будет направлена в противоположную сторону. Таким образом, сила Лоренца будет направлена вертикально вниз.
Проводящий контур находится в однородном магнитном поле. Модуль индукции магнитного поля начинает увеличиваться, в результате чего по контуру начинает протекать электрический ток, направление которого показано на рисунке стрелкой. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор индукции магнитного поля? Ответ запишите словом (словами).
Индукционный ток направлен по часовой стрелке. По правилу правой руки вектор магнитной индукции поля, созданного этим током, направлен от наблюдателя. По условию задания магнитный поток через контур увеличивается. Следовательно, по правилу Ленца вектор магнитной индукции магнитного поля направлен противоположно вектору магнитной индукции поля, созданного этим током, т. е. он направлен к наблюдателю.
Ответ: к наблюдателю.
Индукция магнитного поля, созданного этими проводниками в центре квадрата О,
1) равна нулю только в случае, изображённом на рис. А
2) равна нулю только в случае, изображённом на рис. Б
3) равна нулю в случаях, изображённых на обоих рисунках
4) не равна нулю ни в одном из случаев, изображённых на рисунках
Направление вектора магнитной индукции поля, создаваемого проводником с током, определяется правилом правой руки (также можно использовать правило буравчика): «Если обхватить ладонью правой руки проводник так, чтобы отставленный большой палец был направлен вдоль тока, то оставшиеся четыре пальца укажут направление линий магнитного поля вокруг проводника».
Полное поле получается в результате суперпозиции полей от всех проводников. Мысленно проделав указанные действия для всех проводников и сложив полученные вектора, легко понять, что индукция магнитного поля равна нулю только в случае, изображенном на рисунке Б (на рисунке показаны вклады от разных проводников).
Правильный ответ указан под номером 2.
Два очень длинных тонких провода расположены параллельно друг другу. По проводу течёт постоянный ток силой в направлении, показанном на рисунке. Точка расположена в плоскости проводов точно посередине между ними. Если, не меняя ток в проводе начать пропускать по проводу постоянный ток силой направленный так же, как и в проводе то вектор индукции магнитного поля в точке
1) увеличится по модулю в 2 раза, не меняя направления
2) уменьшится по модулю в 2 раза, не меняя направления
3) изменит направление на противоположное, не изменившись по модулю
4) станет равным нулю
Для магнитного поля имеет место правило суперпозиции. Суммарное поле от нескольких источников равно векторной сумме полей от всех источников по отдельности. Поле длинного прямого длинного проводника с током зависит только от расстояния до проводника. Направление же определяется правилом правой руки.
Согласно правилу правой руки: «Если отведенный в сторону большой палец правой руки расположить по направлению тока, то направление обхвата провода четырьмя пальцами покажет направление линий магнитной индукции». Мысленно проделав указанные действия для обоих проводов, получаем, что в точке А векторы магнитной индукции направлены противоположно, а значит, вектор индукции магнитного поля в этой точке станет равен нулю.
Для магнитного поля имеет место правило суперпозиции. Суммарное поле от нескольких источников равно векторной сумме полей от всех источников по отдельности. Поле длинного прямого длинного проводника с током зависит только от расстояния до проводника. Направление же определяется правилом буравчика.
По правилу буравчика: «Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции поля, создаваемого этим током». Мысленно провернув соответствующим образом буравчик для обоих проводников, получаем, что в точке А векторы магнитной индукции направлены противоположно, а значит, вектор индукции магнитного поля в этой точке станет равен нулю.
Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током
1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.
При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.
Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.
Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.
Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.
Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой \( B \) . Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.
2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.
Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.
Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.
3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.
Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).
Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).
4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.
Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.
Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.
Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.
5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).
Если в поле подковообразного магнита поместить проводник длиной \( l \) , подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.
Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника \( l \) и силе тока \( I \) в проводнике: \( F\sim Il \) . Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции \( B \) . Соответственно, \( F=BIl \) .
Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.
В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.
Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: \( B=\frac
Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.
Единица магнитной индукции \( [В] = [F]/[I][l] \) . \( [B] \) = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.
Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).
6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки \( ab \) , противоположна силе, действующей на сторону \( cd \) .
Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.
В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.
1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S
2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу
3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка
1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение
4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?
5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?
1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа
6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки
1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный
7. Два параллельно расположенных проводника подключили параллельно к источнику тока.
Направление электрического тока и взаимодействие проводников верно изображены на рисунке
8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная
1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓
9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена
1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←
10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?
1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←
11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.
12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.
Часть 2
13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.