Что мы знаем о физике истории открытий некоторых физических законов

10 потрясающих открытий в физике

Изучать физику значит изучать Вселенную. Точнее, как работает Вселенная. Вне всяких сомнений, физика — самая интересная ветвь науки, поскольку Вселенная куда сложнее, чем кажется, и она вмещает в себя все сущее. Иногда мир ведет себя очень странно, и возможно, вы должны быть настоящим энтузиастом, чтобы разделить с нами радость по поводу этого списка. Перед вами десять самых удивительных открытий в новейшей физике, которые заставили многих и многих ученых ломать головы не годами — десятилетиями.

Что мы знаем о физике истории открытий некоторых физических законов

На скорости света время останавливается

Что мы знаем о физике истории открытий некоторых физических законов

Выходит, если двигаться со скоростью света, время вообще застынет на месте? Это так. Но прежде чем вы попытаетесь стать бессмертным, учтите, что двигаться со скоростью света невозможно, если вам не повезло родиться светом. С технической точки зрения движение со скоростью света потребует бесконечного количества энергии.

Квантовая запутанность

Что мы знаем о физике истории открытий некоторых физических законов

Квантовая механика, по сути, это изучение физики на микроскопических масштабах, таких как поведение субатомных частиц. Эти типы частиц невероятно малы, но крайне важны, поскольку именно они образуют строительные блоки всего во Вселенной. Можете представить их как крошечные вращающиеся электрически заряженные шарики. Без лишних сложностей.

Итак, у нас есть два электрона (субатомных частиц с отрицательным зарядом). Квантовая запутанность — это особый процесс, который связывает эти частицы таким образом, что они становятся идентичными (обладают одинаковым спином и зарядом). Когда это происходит, с этого момента электроны становятся идентичными. Это означает, что если вы измените один из них — скажем, измените спин — второй отреагирует незамедлительно. Вне зависимости от того, где он находится. Даже если вы его не будете трогать. Влияние этого процесса потрясающее — вы понимаете, что в теории эту информацию (в данном случае, направление спина) можно телепортировать куда угодно во вселенной.

Гравитация влияет на свет

Что мы знаем о физике истории открытий некоторых физических законов

Как бы это странно ни звучало, это было доказано неоднократно. Хотя у света нет никакой массы, его путь зависит от вещей, у которых эта масса есть — вроде солнца. Поэтому если свет от далекой звезды пройдет достаточно близко к другой звезде, он обогнет ее. Как это касается нас? Да просто: возможно, те звезды, которые мы видим, находятся совсем в других местах. Помните, когда в следующий раз будете смотреть на звезды: все это может быть просто игра света.

Темная материя

Что мы знаем о физике истории открытий некоторых физических законов

На самом деле, объем общей массы во Вселенной значительно больше, чем общая масса, которую мы можем посчитать. Физикам пришлось искать объяснение этому, и в результате появилась теория, включающая темную материю — таинственное вещество, которое не испускает света и берет на себя примерно 95% массы во Вселенной. Хотя существование темной материи формально не доказано (потому что мы не можем ее наблюдать), в пользу темной материи говорит масса свидетельств, и она должна существовать в той или иной форме.

Наша Вселенная быстро расширяется

Что мы знаем о физике истории открытий некоторых физических законов

Но этого не произошло. На самом деле, расширение нашей Вселенной происходит все быстрее и быстрее с течением времени. И это странно. Это означает, что космос постоянно растет. Единственный возможный способ объяснить это — темная материя, а точнее темная энергия, которая и вызывает это постоянное ускорение. А что такое темная энергия? Вам лучше не знать.

Любая материя — это энергия

Объяснение этого явления весьма захватывает и связано с тем, что масса объекта возрастает по мере приближения к скорости света (даже если время замедлится). Доказательство довольно сложное, поэтому можете просто поверить на слово. Посмотрите на атомные бомбы, которые преобразуют довольно небольшие объемы материи в мощные выбросы энергии.

Корпускулярно-волновой дуализм

Что мы знаем о физике истории открытий некоторых физических законов

Серьезно. Звучит смешно, но существуют конкретные доказательства того, что свет — это волна, и свет — это частица. Свет — это и то, и другое. Одновременно. Не какой-то посредник между двумя состояниями, а именно и то и другое. Мы вернулись в область квантовой механики, а в квантовой механике Вселенная любит именно так, а не иначе.

Все объекты падают с одинаковой скоростью

Что мы знаем о физике истории открытий некоторых физических законов

Квантовая пена

Что мы знаем о физике истории открытий некоторых физических законов

Вы думаете, что пространство само по себе пустое. Это предположение довольно разумное — на то оно и пространство, космос. Но Вселенная не терпит пустоты, поэтому в космосе, в пространстве, в пустоте постоянно рождаются и гибнут частицы. Они называются виртуальными, но на самом деле они реальны, и это доказано. Они существуют доли секунды, но это достаточно долго, чтобы сломать некоторые фундаментальные законы физики. Ученые называют это явление «квантовой пеной», поскольку оно ужасно напоминает газовые пузырьки в безалкогольном газированном напитке.

Эксперимент с двойной щелью

Что мы знаем о физике истории открытий некоторых физических законов

Эксперимент с двумя щелями — это просто невероятно простой и загадочный эксперимент. Вот в чем он заключается. Ученые размещают экран с двумя щелями напротив стены и выстреливают пучком света через щель, чтобы мы могли видеть, где он будет падать на стену. Поскольку свет — это волна, он создаст определенную дифракционную картину, и вы увидите полоски света, рассыпанные по всей стене. Хотя щели было две.

Но частицы должны реагировать иначе — пролетая через две щели, они должны оставлять две полоски на стене строго напротив щелей. И если свет — это частица, почему же он не демонстрирует такое поведение? Ответ заключается в том, что свет будет демонстрировать такое поведение — но только если мы захотим. Будучи волной, свет пролетает через обе щели одновременно, но будучи частицей, он будет пролетать только через одну. Все, что нам нужно, чтобы превратить свет в частицу — измерять каждую частицу света (фотон), пролетающую сквозь щель. Представьте себе камеру, которая фотографирует каждый фотон, пролетающий через щель. Этот же фотон не может пролетать через другую щель, не будучи волной. Интерференционная картина на стене будет простой: две полоски света. Мы физически меняем результаты события, просто измеряя их, наблюдая за ними.

Это называется «эффект наблюдателя». И хотя это хороший способ закончить эту статью, она даже поверхностно не копнула в совершенно невероятные вещи, которые находят физики. Есть куча вариаций эксперимента с двойной щелью, еще более безумные и интересные. Можете поискать их, только если не боитесь, что квантовая механика засосет вас с головой.

Источник

Великие физические открытия

С древних времен люди видели физические явления, но не имели возможности объяснить почему, например, тяжелый предмет падает на землю быстрее легкого.

Галилей. Основы механики.

Великий ученый опытным путем приводил доказательства физических явлений. Именно Галилео Галилей создал в 1609 году первый телескоп и доказал, что Земля вращается вокруг солнца.

Ньютон. Закон всемирного тяготения.

В 1665 году Исаак Ньютон уехал в родной Вулстроп из-за эпидемии чумы, и углубился в науку. За два последующих года он совершил большее количество своих значимых открытий. Например, Закон всемирного тяготения.

Именно Ньютон доказал с помощью стеклянной призмы, что белый луч света состоит из всех цветов радуги и открыл три закона движения.

Энштейн. Теория относительности.

Альберта Энштейна можно с уверенностью назвать ученым – теоретиком. Свою Теорию относительности он опубликовал в 1905 году.

Через несколько месяцев Энштейн позволил по-другому посмотреть на мощность атома, выведя свою, пожалуй, самую известную формулу E=mc 2.

Эта формула являлась доказательством присутствия огромной энергии в любом предмете. Даже в том, который находится в состоянии покоя.

Резерфорд и Чедвик. Протоны и Нейтроны.

Эрнест Резерфорд в начале XX века проводил научные эксперименты с атомом, считая его пока мельчайшей частицей. В результате экспериментов с золотой фольгой, ученый доказал, что атом не проходит сквозь фольгу и не меняет направление, что позволяет утверждать о наличии твердого вещества внутри атома, которое Резерфорд назвал ядром.

Эрнесту Резерфорду принадлежит открытие и других составляющих атома – протонов и нейтронов.

Дело его завершил ученик Джеймс Чедвик, открывший составляющие самого ядра – протоны и нейтроны.

Планк. Квантовая теория.

Макс Планк, немецкий ученый-теоретик описал законы, по которым существуют мельчайшие частицы – атомы, протоны, нейтроны, в субатомном мире, в Квантовой теории.

Опираясь на опыты мадам Кюри, открывшей радий, Планк доказал, что энергия существует в определенном объеме. Единица этого объема энергии была им названа Квантом.

Клаузиус. Второй закон термодинамики.

Еще один немецкий ученый определил Второй закон термодинамики. Этот закон стал настоящим прорывом в промышленности.

Закон объяснял ограниченную эффективность энергии, например, в паровых двигателях. Только часть энергии расходуется на то, чтобы приводить в движение предмет, остальная часть тратиться на нагрев воздуха и деталей самого двигателя.

Камерлинг-Оннес. Сверхпроводимость.

Голландский опытный физик-практик в 1909 году открыл сверхпроводники.

В своих опытах он использовал ртуть при низких температурах, помещая ее в жидкий гелий и измеряя сопротивление. Выяснилось, что при температуре минус 268 °С, сила сопротивления равна нулю. Это и назвалось сверхпроводимостью.

Циолковский. Теория движения реактивных аппаратов.

Своей теорией Константин Эдуардович занимался с 1896 года. Основываясь на своей теории, ученый изобрел целый ряд схем ракет, способных преодолевать огромные расстояния.

Циолковский первый обосновал теорию многоступенчатых ракет и их движения в гравитационном поле.

Фарадей. Электрогенератор.

Майкл Фарадей в 1831 году стал первым ученым, запустившим процесс электромагнита в обратном направлении, и использовал магнитное поле для создания электричества, а не наоборот.

Первый электрогенератор, это проволока между двух полюсов магнита. Фарадей первым обнаружил ток, проходящий по проволоке, когда она находится на близком расстоянии от магнита.

Нельзя перечислить в одной статье все великие достижения гениальных физиков мира и их открытий, приведших общество к современной жизни. Но отдать дань их гениальным открытиям люди просто обязаны и каждая фамилия должна быть на слуху у современников:

Вильгельм Рентген – рентгеновские лучи;

Александр Степанович Попов – изобретатель радио;

Мария Склодовская-Кюри – выделение чистого металлического радия;

Алессандро Вольта-закон напряжения, атмосферное электричество.

И многие-многие другие ученые, для перечисления которых понадобится целая книга.

Источник

Пять неожиданных и грандиозных открытий физики

Когда вас учат научному методу, вы привыкаете следовать аккуратной процедуре, чтобы получить представление о каком-то естественном явлении нашей Вселенной. Начните с идеи, проведите эксперимент, проверьте идею или опровергните ее, в зависимости от результата. Но в реальной жизни все оказывается гораздо сложнее. Иногда вы проводите эксперимент, и его результаты расходятся с тем, что вы ожидали. Иногда подходящее объяснение требует проявления воображения, которое выходит далеко за рамки логических суждений любого разумного человека. Сегодняшняя физическая Вселенная довольно хорошо понята, но история о том, как мы к этому пришли, полна сюрпризов. Перед вами пять великих открытий, совершенных совершенно непредсказуемым образом.

Что мы знаем о физике истории открытий некоторых физических законов

Многие открытия в физике происходят случайно

Скорость света не меняется

Представьте, что вы бросаете мяч как можно дальше. В зависимости от того, в каком виде спорта вы играете, мяч можно разогнать до 150 км/ч, используя силу рук. А теперь представьте, что вы на поезде, который движется невероятно быстро: 450 км/ч. Если вы бросите мяч из поезда, двигаясь в том же направлении, как быстро будет двигаться мяч? Просто суммируйте скорость: 600 км/ч, вот и ответ. А теперь представьте, что вместо того, чтобы бросить мяч, вы испускаете луч света. Добавьте скорость света к скорости поезда и получите ответ, который будет… совершенно неверным.

Что мы знаем о физике истории открытий некоторых физических законов

Когда ядро вылетает из пушки сзади грузовика ровно с такой же скоростью, с какой тот движется, скорость снаряда оказывается нулевой. Если же вылетает свет, он всегда движется со скоростью света.

Это была центральная идея специальной теории относительности Эйнштейна, но само открытие сделал не Эйнштейн, а Альберт Михельсон в 1880-х годах. И неважно, выпускали бы вы пучок света по направлению движения Земли или перпендикулярно этому направлению. Свет всегда двигался с одинаковой скоростью: с, скорость света в вакууме. Михельсон разрабатывал свой интерферометр для измерения движения Земли через эфир, а вместо этого проложил путь для относительности. Его Нобелевская премия 1907 года стала самым известным в истории нулевым результатом и важнейшим в истории науки.

Вся масса атома сосредоточена в ядре

В начале 20 века ученые считали, что атомы сделаны из смены отрицательно заряженных электронов (начинка торта), заключенных в положительно заряженной среде (торт), которая заполняет все пространство. Электроны можно оторвать или удалить, чем объясняется явление статического электричества. Долгие годы модель композитного атома в положительно заряженном субстрате Томпсона была общепринятой. Пока Эрнест Резерфорд не решился ее проверить.

Что мы знаем о физике истории открытий некоторых физических законов

Ученые не перестают исследовать атомы

Обстреливая высокоэнергетическими заряженными частицами (из радиоактивного распада) тончайшую пластинку золотой фольги, Резерфорд ожидал, что все частицы пройдут насквозь. И некоторые прошли, а некоторые отскочили. Для Резерфорда это было совершенно невероятно: будто бы вы выстрелили пушечным ядром в салфетку, и оно отскочило.

«Недостающая энергия» привела к открытию мельчайшей, практически невидимой частицы

Во всех взаимодействиях, которые мы когда-либо видели между частицами, энергия сохранялась всегда. Она может быть преобразована из одного типа в другой — потенциальный, кинетический, массы, покоя, химический, атомный, электрический и т. д. — но никогда не разрушается и не исчезает. Около сотни лет назад ученых озадачил один процесс: при некоторых радиоактивных распадах продукты распада имеют меньшую общую энергию, чем исходные реагенты. Нильс Бор даже постулировал, что энергия всегда сохраняется… кроме тех случаев, когда нет. Но Бор ошибся и за дело взялся Паули.

Что мы знаем о физике истории открытий некоторых физических законов

Преобразование нейтрона в протон, электрон и антиэлектронное нейтрино является решением проблемы сохранения энергии при бета-распаде

Паули утверждал, что энергия должна сохраняться, и еще в 1930 году предложил новую частицу: нейтрино. Эта «нейтральная крошка» не должна взаимодействовать электромагнитно, а переносит небольшую массу и уносит кинетическую энергию. Хотя многие были настроены скептично, эксперименты с продуктами ядерных реакций в конечном итоге выявили как нейтрино, так и антинейтрино в 1950-х и 1960-х годах, что помогло привести физиков как к Стандартной модели, так и к модели слабых ядерных взаимодействий. Это потрясающий пример того, как теоретические предсказания могут иногда приводить к впечатляющему прорыву при появлении подходящих экспериментальных методов.

Все частицы имеют нестабильные аналоги

Часто говорят, что прогресс в науке встречают не фразой «эврика!», а «очень смешно», и это отчасти правда. Если вы заряжаете электроскоп — в котором два проводящих металлических листа соединены с другим проводником — оба листа получат один и тот же электрический заряд и в результате оттолкнут друг друга. Но если вы поместите этот электроскоп в вакуум, листы не должны разряжаться, но со временем разрядятся. Как это объяснить? Лучшее, что нам пришло в голову, — из космоса на Землю попадают высокоэнергетические частицы, космические лучи, и продукты их столкновений разряжают электроскоп.

В 1912 году Виктор Гесс провел эксперименты по поиску этих высокоэнергетических частиц на воздушном шаре и обнаружил их в большом изобилии, став отцом космических лучей. Построив детекторную камеру с магнитным полем, вы можете измерить как скорость, так и отношение заряда к массе, основываясь на кривых движениях частиц. Протоны, электроны и даже первые частицы антиматерии были обнаружены при помощи этого способа, но самый большой сюрприз пришел в 1933 году, когда Пол Кунце, работая с космическими лучами, обнаружил след от частицы, похожей на электрон… только в тысячи раз тяжелее.

Мюон с временем жизни всего 2,2 микросекунды был позднее подтвержден экспериментально и обнаружен Карлом Андерсоном и его студентом Сетом Неддермайером, использующими облачную камеру на земле. Позже выяснилось, что составные частицы (такие как протон и нейтрон) и фундаментальные (кварки, электроны и нейтрино) — все имеют несколько поколений более тяжелых родственников, причем мюон является первой частицей «поколения 2», когда-либо обнаруженной.

Вселенная началась с большого взрыва

Теория большого взрыва

Возникло предположение, что этот «космический микроволновый фон» будет всего на несколько градусов выше абсолютного нуля.

В 1964 году Арно Пензиас и Боб Уилсон случайно обнаружили послесвечение Большого Взрыва. Работая с радиоантенной в лаборатории Белла, они обнаружили однородный шум везде, куда ни смотрели на небе. Это не было Солнцем, галактикой или атмосферой Земли… они просто не знали, что это. Поэтому они помыли антенну, убрали голубей, но от шума так и не избавились. И только тогда, когда результаты показали физику, знакомому с подробными предсказаниями всей Принстонской группы, он с помощью радиометра определил тип сигнала и осознал важность находки. Впервые ученые узнали о происхождении Вселенной.

Оглядываясь на те научные знания, которые мы имеем сегодня, с их прогностической силой, и на то, как столетия открытий изменили нашу жизнь, мы соблазняемся видеть в науке устойчивое развитие идей. Но на самом деле история науки беспорядочна, полна сюрпризов и насыщена спорами.

Источник

Великие физики и их открытия

ВИЛЬГЕЛЬМ РЕНТГЕН (1845—1923)
Что мы знаем о физике истории открытий некоторых физических законов
В январе 1896 года над Европой и Америкой прокатился тайфун газетных сообщений о сенсационном открытии профессора Вюрцбургского университета Вильгельма Конрада Рентгена. Казалось не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей, как выяснилось позже, Берте Рентген, жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности.

Что мы знаем о физике истории открытий некоторых физических законов

Исаак Ньютон родился в 1643 г. в местечке Вулсторп около города Грантема, расположенного в центре Британии, в семье небогатого фермера. В 12 лет его отправили учиться в г. Грантем в королевскую школу.
Во время учебы Исаак мастерил сложные механические модели различных машин. Своим первым физическим опытом Ньютон считал измерение силы ветра во время бури в 1658 г.
Основную часть своих открытий Ньютон совершил в течение двух лет (1665 – 1667) по окончании Кембриджского университета. В то время когда в Англии свирепствовала чума, Ньютон, чтобы избежать заражения, уехал в родной Вулсторп, где погрузился в научную работу.

Что мы знаем о физике истории открытий некоторых физических законов

Что мы знаем о физике истории открытий некоторых физических законов

Что мы знаем о физике истории открытий некоторых физических законов

Что мы знаем о физике истории открытий некоторых физических законов

Знаменитый итальянский ученый родился в 1564 г. Галилей был одним из основателей точного естествознания, боролся против схоластики, считал основой познания опыт.
Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок. Построил телескоп с 32-кратным увеличением и открыл горы на Луне, четыре спутника Юпитера, фазы Венеры, пятна на Солнце. Активно защищал гелиоцентрическую систему мира, за что был подвергнут суду инквизиции (1633), вынудившей его отречься от учения Н. Коперника. Согласно легенде, Галилей после своего вынужденного отречения воскликнул: «А все-таки она вертится!»
До конца жизни Галилей считался «узником инквизиции» и принужден был жить на своей вилле Арчетри близ Флоренции. Галилео Галилей умер в 1642 г. В 1992 г. Папа Иоанн-Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.

Что мы знаем о физике истории открытий некоторых физических законов

Людвиг Больцман, без сомнения, был величайшим ученым и мыслителем, которого дала миру Австрия. Еще при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим ученым, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».

Людвиг Эдуард Больцман родился в Вене 20 февраля 1844 года, как раз в ночь с последнего дня масленицы на среду, с которой начинался великий пост. Больцман обычно в шутку говорил, что из-за даты своего рождения он и получил характер, которому присущи резкие переходы от ликования к скорби. Отец его, Людвиг Георг Больцман, работал в Имперском министерстве финансов. Он умер от туберкулеза, когда Людвигу было всего пятнадцать лет. Людвиг Больцман учился блестяще, а мать поощряла его разнообразные интересы, дав ему всестороннее воспитание Так, в Линце Больцман брал уроки игры на фортепиано у знаменитого композитора Антона Брукнера. Всю жизнь он любил музыку и часто устраивал в своем доме с друзьями домашние концерты. В 1863 году Больцман поступил в Венский университет, где изучал математику и физику.

Тогда максвелловская электродинамика представляла собой новейшее достижение теоретической физики. Не удивительно, что и первая статья Людвига была посвящена электродинамике. Однако уже во второй своей работе, опубликованной в 1866 году в статье «О механическом значении второго начала термодинамики», где он показал, что температура соответствует средней кинетической энергии молекул газа, определились научные интересы Больцмана.

Осенью 1866 года, за два месяца до получения докторской степени, Больцман был принят в Институт физики на должность профессора-ассистента. В 1868 году Больцману было присвоено право чтения лекций в университетах, а годом позже он стал ординарным профессором математической физики в университете в Граце. В этот период он помимо разработки своих теоретических идей занимался и экспериментальными исследованиями связи между диэлектрической постоянной и показателем преломления с целью получить подтверждение максвелловской единой теории электродинамики и оптики. Для своих экспериментов он дважды брал в университете краткий отпуск, чтобы поработать в лабораториях Бунзена и Кенигсбергера в Гейдельберге и Гельмгольца и Кирхгофа в Берлине. Результаты этих исследований были опубликованы в 1873-1874 годах.

Больцман принимал также активное участие в планировании новой физической лаборатории в Граце, директором которой он позже стал.

Это был расцвет научной деятельности Больцмана. Однако ему не хватало широкой аудитории, он чувствовал потребность делиться своими идеями не только со студентами, жадно внимавшими молодому блестящему профессору, но и со своими коллегами-учеными. А Грац для этого был слишком маленьким городком. Вот почему в 1873 году Людвиг Больцман возвращается в Вену в качестве профессора математики. Незадолго до отъезда он познакомился с будущей женой Генриеттой фон Айгентлер.

Популярность Больцмана в Вене была невероятной. Для его лекций всегда выбирали самые большие аудитории, чаще всего актовые залы И все равно все желающие попасть не могли.

Перед началом лекции служители вносили три черные доски. Самую большую ставили в центре, а две поменьше — по бокам. И выходил Больцман. Высокого роста, с массивной головой, увенчанной мелко вьющимися каштановыми волосами, широкоскулый, с жесткой, упрямой бородой, с глубоко спрятанными под толстыми круглыми очками глазами — смеющимися и печальными одновременно, он выходил на кафедру, сутулясь и смущаясь своей внешности, своего огромного, вечно красного носа.

Он не отвечал на аплодисменты никак. Стоял к аудитории спиной и ждал, когда в зале наступит тишина. И в этой тишине он с трудом выдавливал из себя ординарные, скучные и обязательные слова: «Итак, в прошлый раз мы остановились. » И пятнадцать минут громким голосом объяснял содержание предыдущей лекции, красивым, четким почерком выписывая на левой доске итоговые формулы.

А читал он четырехгодичный курс, охватывающий механику, гидромеханику, учение об упругости, электричество, магнетизм, кинетическую теорию газов и. философию.

Покончив с прошлой лекцией, он возвращался на кафедру, снимал очки и несколько секунд стоял в молчании, склонив голову. И вдруг в мертвой тишине раздавались слова, похожие на молитву: «Простите меня, если, прежде чем приступить к чтению лекций, я буду вас просить кое-что для себя лично, что мне важнее всего, — ваше доверие, ваше расположение вашу любовь, одним словом, самое большое, что вы способны дать, — вас самих. » И начинал читать лекцию.

Его имя было окружено легендами. Да он и сам, своей детской непосредственностью и восторженностью перед самыми прозаическими вещами давал обильную пищу этим анекдотическим легендам. Вдруг однажды весь Грац был взбудоражен невероятной новостью: господин профессор экспериментальной физики лично купил на рынке корову и торжественно за веревку через весь городок провел ее в свою виллу. Затем, разместив «священное животное» с подобающими почестями, профессор физики направился к профессору зоологии, у которой очень долго консультировался по процессу доения. Или вдруг рано утром зимой весь Грац сходился к катку, на котором Больцман вместе с детьми осваивал катание на коньках.

Но самым неизменным увлечением профессора физики была музыка. В Венском театре оперы за Больцманом и его семьей была постоянно закреплена ложа; а дома профессор физики ежедневно устраивал вечера камерной музыки, причем сам неизменно исполнял партию на рояле.

Из работ, выполненных Больцманом в Вене, особого внимания заслуживает статья «О теории упругости при внешних воздействиях» (1874), где он сформулировал теорию линейной вязкоупругости. Он описал это явление с помощью интегральных уравнений, представляющих собой важный вклад в теоретическую реологию.

Увы, административная работа, которой в Вене было куда больше, чем в Граце, была для ученого тяжелым грузом. Его манила кафедра экспериментальной физики в Граце. Здесь он мог бы располагать собственной лабораторией и читать лекции по физике, а не по математике, как в Вене. Бюрократизма в Граце было меньше. Но, кроме того, Больцман собирался жениться. В Вене найти подходящую квартиру было очень трудно, а его будущая жена была из Граца. В 1876 году Больцман занял пост директора Физического института в Граце и оставался на этой должности четырнадцать лет.

Еще в 1871 году Больцман указал, что второй закон термодинамики может быть выведен из классической механики только с помощью теории вероятности. В 1877 году в «Венских сообщениях о физике» появилась знаменитая статья Больцмана о соотношении между энтропией и вероятностью термодинамического состояния. Ученый показал, что энтропия термодинамического состояния пропорциональна вероятности этого состояния и что вероятности состояний могут быть рассчитаны на основании отношения между численными характеристиками соответствующих этим состояниям распределений молекул.

То есть, если достаточно большую систему оставить без внешнего вмешательства на достаточно долгое время, то вероятность того, что мы найдем ее по истечении этого времени в равновесном состоянии, несравненно больше, чем вероятность того, что она будет в каком угодно неравновесном состоянии.

Эта так называемая «аштеорема» стала вершиной учения Больцмана о мироздании. Формула этого начала была позднее высечена в качестве эпитафии на памятнике над его могилой. Эта формула очень схожа по своей сути с законом естественного отбора Чарльза Дарвина. Только «Аштеорема» Больцмана показывает, как зарождается и протекает «жизнь» самой Вселенной.

Немецкий физик Р. Клаузиус, давший в 1850 году формулировку второго закона термодинамики, позднее, в 1865 году, введший понятие энтропии, одно время был весьма популярной фигурой. Выводы, сделанные им из второго начала о неизбежности тепловой смерти, были взяты на вооружение не только многими физиками. Главным образом к ним обратились философы, получившие мощные, казалось, неоспоримые аргументы в пользу идеалистических концепций о начале и конце мира, в том числе и в пользу эмпириокритицизма, учения Э. Маха и «энергетического» учения В. Оствальда.

Вокруг «аш-теоремы» Людвига Больцмана мгновенно разгорелись не меньшие по накалу дискуссии, чем по тепловой смерти. «Аш-теорема» и выдвинутая на ее основе флуктуационная гипотеза были препарированы со всей тщательностью и скрупулезностью и, как и следовало ждать, обнаружили в себе зияющие, непростительные, казалось бы, для такого великого ученого, как Больцман, изъяны.

Оказалось, что если принять за истину гипотезу Больцмана, то надо принять за веру и такое чудовищное, не укладывающееся ни в какие рамки здравого смысла допущение: рано или поздно, а точнее, уже сейчас, где-то во Вселенной должны идти процессы в обратном второму началу направлении, то есть тепло должно переходить от более холодных тел к более горячим! Это ли не абсурд.

Больцман этот «абсурд» отстаивал, он был глубоко убежден, что такой ход развития Вселенной наиболее естественный, ибо он является неизбежным следствием ее атомного строения.

Вряд ли «аш-теорема» получила бы такую известность, если бы была выдвинута каким-нибудь другим ученым. Но ее выдвинул Больцман, умевший не только увидеть за занавесом скрытый от других мир, но умевший защищать его со всей страстью гения, вооруженного фундаментальными знаниями как физики, так и философии.

Кульминацией драматических коллизий между физиком-материалистом и махистами, видимо, следует считать съезд естествоиспытателей в Любеке в 1895 году, где Людвиг Больцман своим друзьям-врагам дал генеральное сражение. Он одержал победу, но в результате после съезда ощутил еще большую пустоту вокруг себя. В 1896 году Больцман написал статью «О неизбежности атомистики в физических науках», где выдвинул математические возражения против оствальдовского энергетизма.

Вплоть до 1910 года само существование атомистики все время оставалось под угрозой. Больцман боролся в одиночку и боялся, что дело всей его жизни окажется в забвении. В предисловии ко второй части своих лекций по теории газов он писал в 1898 году: «По моему мнению, большой трагедией для науки будет, если (подобно тому, как это случилось с волновой теорией света из-за авторитета Ньютона) хотя бы на время теория газов окажется позабытой из-за того враждебного отношения к ней, которое воцарилось в данный момент. Я сознаю, что сейчас являюсь единственным, кто, хотя и слабо, пытается плыть против течения. И, тем не менее, я могу способствовать тому, чтобы, когда теория газов снова будет возвращена к жизни, не пришлось делать слишком много повторных открытий».

В 1890 году Больцман принял предложение занять кафедру теоретической физики в Мюнхенском университете и мог, наконец, заняться преподаванием своего любимого предмета. В течение того времени, что он преподавал здесь экспериментальную физику, он использовал для иллюстрации теоретических концепций наиболее наглядные механические модели. Множество студентов со всех концов мира приезжали в Мюнхен, чтобы пройти курс обучения под руководством Больцмана.

Единственная слабость его позиции заключалась в том, что баварское правительство в то время не выплачивало пенсии университетским профессорам; между тем у Больцмана все более ухудшалось зрение, и его беспокоило будущее семьи.

Своими блестящими, отнюдь не корректными, как это было принято в те время, выступлениями в научных дискуссиях Больцман быстро приобрел репутацию человека с беспокойным, трудным характером; он не умел быть снисходительным даже к друзьям, когда видел их заблуждения хотя и страдал от своей резкости. В науке для Больцмана компромиссов не существовало. И если у него отнимали возможность честной борьбы он без сожалений расставался с самыми почетными должностями. Из Мюнхена Больцман возвращается в Венский университет, а через несколько лет переезжает в Лейпциг. Осенью 1902 года Больцман вернулся Вену. И везде, во всех университетах он вел изматывающую борьбу за материалистическую физику, за атомистику. Это была, особенно в последний период его жизни, по сути дела, борьба ученого-одиночки с крупнейшими физиками того времени, главами самых влиятельных научных школ.

В феврале 1904 года жена писала дочери Иде, которая оставалась в Лейпциге и заканчивала там гимназию: «Отцу все хуже с каждым днем. Я потеряла веру в будущее. Я надеялась, в Вене наша жизнь будет лучше». Здоровье Больцмана страдало от постоянных споров с противниками. Зрение его ухудшилось до такой степени, что ему трудно стало читать; пришлось нанять сотрудницу, которая читала ему научные статьи; жена готовила его рукописи к печати.

Весьма прискорбно, что он не дожил до воскрешения атомизма и умер с мыслью, что о кинетической теории все забыли. Однако многие идеи Больцмана уже нашли свое разрешение в таких поразительных открытиях, как ультрамикроскоп, эффект Доплера, газотурбинные двигатели, освобождение энергии атомного ядра. Но это все частности в той картине мира, которую видел и описывал Больцман, отдельные следствия атомного строения мира.

Еще в статье 1872 года Больцман ввел представление о дискретных уровнях энергии, благодаря чему был открыт путь к созданию квантовой механики. Однако еще более важную роль в становлении современной физики сыграл его статистический метод. Как бы в предчувствии статистической интерпретации квантовой механики он писал в 1898 году в своих лекциях по теории газов: «Мне ещё надо упомянуть возможное, что фундаментальные уравнения движения отдельных молекул окажутся всего лишь приблизительными формулами, дающими средние значения. и получаемыми только в результате длительных серий наблюдений на основе теории вероятностей».

Много раз его искренность сталкивалась с вероломством, но Больцман, тем не менее, до конца жизни сохранил веру в дружбу и любовь.

Стихи и музыка были для него своего рода теми кирпичиками в единой теории мироздания, куда входили и законы физики, и учение Дарвина, которого Больцман боготворил, и любимая им философия.

«Судьбу Людвига Больцмана как одного из основоположников современной физики, — писал Э. Бода, — можно сравнить только с судьбой великого творца множеств — Георга Кантора. Идеи их обоих не были поняты и оценены надлежащим образом при жизни авторов, что трагически сказалось на судьбах этих гениальных людей».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *