Что можно точно утверждать о белках обладающих четвертичной структурой

Четвертичная структура белка представлена олигомерами

Такие агрегаты стабилизируются водородными связями, ионными связями и электростатическими взаимодействиями между остатками аминокислот, находящимися на поверхности глобулы.

Подобные белки называются олигомерами, а их индивидуальные цепи – протомерами (мономерами, субъединицами). Если белки содержат 2 протомера, то они называются димерами, если 4, то тетрамерами и т.д.

Что можно точно утверждать о белках обладающих четвертичной структурой

Строение тетрамера гемоглобина взрослых

Например, гемоглобин – белок эритроцитов, переносящий кислород, состоит из 4 гемсодержащих субъединиц – 2 α-субъединицы и 2 β-субъединицы в гемоглобине взрослых, 2 α-субъединицы и 2 γ-субъединицы в фетальном гемоглобине.

Лактатдегидрогеназа – фермент, принимающий активное участие в окислении глюкозы в бескислородных условиях, также включает 4 субъединицы – Н (heart) и М (muscle) в разных сочетаниях: Н4, Н3М1, Н2М2, Н1М3, М4., всего 5 изоферментов.

Креатинкиназа – фермент, участвующий в регенерации АТФ при мышечном сокращении, состоит из 2 субъединиц – В (brain) и М (muscle) в разных сочетаниях: ВВ, ВМ, ММ. Всего 3 изофермента.

Взаимодействие протомеров друг с другом осуществляется по принципу комплементарности, т.е. их поверхность подходит друг другу по геометрической форме и по функциональным группам аминокислот (возникновение ионных и водородных связей).

Например, в легких у гемоглобина кооперативное взаимодействие субъединиц в 300 раз ускоряет присоединение кислорода к гемоглобину. В тканях отдача кислорода также ускоряется в 300 раз.

Что можно точно утверждать о белках обладающих четвертичной структурой

Схема кооперативного взаимодействия субъединиц в гемоглобине

Присоединение в легких первой молекулы кислорода к одной из субъединиц гемоглобина изменяет ее конформацию. В результате она начинает влиять на следующую убъединицу, облегчая присоединение к ней кислорода. После этого они вдвоем влияют на третью субъединицу и так далее. В тканях первая молекула кислорода отделяется от своей субъединицы не очень легко, вторая уже быстрее и так далее.

Дезоксиформа гемоглобина обозначается как Т-форма, напряженная (англ. tense), она обладает существенно более низким сродством к кислороду. Оксигенированная форма, или R-форма (англ. relaxed), обладает высоким сродством к кислороду.

Источник

Что можно точно утверждать о белках обладающих четвертичной структурой

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помоши водородных и ионных связей.

Способ совместной упаковки и укладки этих полипептидных цепей называют четвертичной структурой белка. Четвертичная структура имеется, например, у гемоглобина — содержащегося в эритроцих позвоночных красного пигмента, связывающего и переносящего кислород.

Что можно точно утверждать о белках обладающих четвертичной структурой

Молекула гемоглобина состоит из четырех отдельных полипептидных цепей двух разных типов: из двух а-цепей и двух бета-цепей. Цепи эти по своему строению напоминают полипептидную цепь миоглобина. Две отцепи содержат по 141 аминокислотному остатку, а две (3-цепи — по 146 остатков. Полную структуру гемоглобина определили Кендрью и Перуц.

Как и у других глобулярных белков, гидрофобные боковые цепи гемоглобина скрыты внутри молекулы, а гидрофильные выставлены наружу, что делает гемоглобин растворимым в воде. Мутация, вызывающая замену одной из гидрофильных аминокислот на гидрофобную и тем самым снижающая растворимость гемоглобина, служит причиной болезни, известной как серповидноклеточная анемия.

Некоторые вирусы, например вирус табачной мозаики, имеют белковую оболочку, состоящую из многих полипептидных цепей, упакованных высокоупорядоченным образом.

— Вернуться в оглавление раздела «Биология.»

Источник

Четвертичная структура белка

Вы будете перенаправлены на Автор24

Четвертичная структура белка – это способ укладки в пространстве отдельных полипептидных цепей, которые обладают разной (возможно одинаковой) первичной, вторичной, третичной структурой.

Четвертичная структура белка

Большая часть белковых молекул способна сохранять свою биоактивность, то есть выполнять присущую им функцию только в узком диапазоне температур и кислотности среды. При повышении температуры, изменении кислотности до экстремальных значений, добавлении гидрофобных агентов (например, органических растворителей) или при значительном увеличении концентрации солей, в структуре белков происходят изменения, которые приводят к их денатурации — потере своей нативной (естественной) пространственной структуры. Как правило, при этом первичная структура белка не разрушается.

Рисунок 1. Четвертичная структура белка. Автор24 — интернет-биржа студенческих работ

В структурном отношении четвертичная структура белка является макромолекулой. Многочисленные функциональные белки состоят из нескольких полипептидных цепей, они соединяются между собой несколькими главновалентными цепями. В данном случае ковалентные связи отсутствуют. Каждая отдельная полипептидная цепь получила название протомера, мономера или субъединицы, не обладающей высокой функциональной активностью.

Такую способность белок приобретает при определенном способе пространственного объединения мономеров. При этом возникает новое качество, которое не свойственно мономерному белку. Та молекула, которая образуется в результате этого, называется олигомером.

Готовые работы на аналогичную тему

Олигомерные белки обладают следующими свойствами:

Например, молекула гемоглобина состоит из двух α- и двух β-полипептидных цепей. Эта молекула имеет форму тетрамера. Другими словами, в состав молекула гемоглобина входят четыре полипептидные цепи, которые находятся в систематическом взаимодействии.

Каждая из них окружает специализированную группу гема-пигмента, окрашивающего кровь в характерный красный цвет. В определенных условиях молекула гемоглобина может подвергнуться обратной диссоциации. Такой процесс формируется под влиянием разрыва водородных связей. После удаления солей или мочевины происходит автоматическая ассоциация исходной молекулы гемоглобина.

Классическим примером олигомерной молекулы является вирус табачной мозаики, который имеет гигантскую молекулу. Длина вируса составляет примерно 300 нм. Вокруг молекулы РНК нанизываются белковые частицы, которые образуют спиралеобразную структуру, содержащую более 130 витков..

Данный вирус обладает удивительной способностью, которая заключается в том, что наблюдается полная регенерация (восстановление) четвертичной структуры с восстановлением всех ее физических параметров, а также биологических функций.

Особенности функционирования четвертчиной структуры белка

Таким образом, последовательность аминокислот содержит внутри себя информацию, которая реализуется на всех уровнях организации структуры белковой молекулы.

Многие ферменты обладают четвертичной структурой. Например, фосфорилаза это молекула, которая состоит из двух идентичных друг другу субъединиц, каждая из которых состоит из двух пептидных цепей. Таким образом, молекула представляет собой тетрамер. Отдельные субъединицы не могут иметь особенной каталитической активности. Любой регуляторный фермент всегда имеет четвертичную структуру и обеспечивает в клетке высокую скорость требуемых химических реакций.

Четвертичная структура белка имеет достаточно высокую степень стабильности. При этом она все- таки подвергается денатурации и может быть восстановлена при наличии нескольких условий от температуры и до наличия катализаторов.

Следует отметить тот факт, что четвертичная структура полностью расшифрована для нескольких сотен белков, но это далеко не все из известных белков. Эта структура обладает следующими характеристиками:

Структура белка, которая сформировалась в рибосоме может подвергаться модификации или посттрансляционному процессингу. Например, это происходит при превращении предшественников ряда ферментов или специализированных гормонов в вещества более высокого порядка.

Таким образом, существуют все основания, которые подтверждают существование четвертичной структуры белка (а также структур) низшего порядка. Каждый белок характеризуется собственной уникальной структурой и специализированными функциями. Выяснение структуры всех белков может служить ключом к познанию природы функционирования всех живых организмов. Такой путь научного поиска может помочь решить следующие многообразие проблем:

Многие исследователи склонны рассматривать существование пятого уровня организации структуры белка. В данном случае речь идет о полифункциональных макромолекулярных комплексах.

Ассоциат – это макромолекулярный белковый комплекс.

Ферменты в данном случае получают название метаболонов или олигомеров, которые катализируют весь путь превращений субстрата в синтетазы высших кислот, пируватдегидрогеназный комплекс, дыхательную цепь.

Подводя итог всему вышесказанному, можно сделать вывод о том, что взаимодействие между отдельными молекулами внутри четвертичной структуры белка дает свободу к изменениям ее пространственной структуры.

Расположение атомов и групп молекул органического вещества, обусловленное возможностями вращения данных молекул вокруг ковалентных связей, получило название конформации. Такие изменения лежат в основе биологической активности белковых полимеров.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 31 01 2021

Что можно точно утверждать о белках обладающих четвертичной структурой

Анжелика Ивановна Иванова

Источник

Четвертичная структура белка: ее характеристика, особенности и функционирование, специфика олигомерных белков

Четвертичная структура белка

Особенности четвертичной структуры

Четвертичная структура белка — это вариант того, как в пространстве укладываются отдельные полипептидные цепи, обладающие разной (может быть, одинаковой) первичной, вторичной и третичной структурой.

Вторичная структура белка представляет собой складчатый слой (альфа-спираль).

Что можно точно утверждать о белках обладающих четвертичной структурой​​​​​​​

Почти все белковые молекулы могут сохранять свою биоактивность. Это значит, что они выполняют свойственные им функции исключительно в узком температурном диапазоне и в узком диапазоне кислотности среды.

В случаях, когда температура повышается или кислотность изменяется до экстремальных показателей, при добавлении гидрофобных агентов, к примеру, органических растворителей, увеличении концентрации солей, происходит изменения в структуре белков. Эти изменения становятся причиной денатурации — белок теряет свою естественную пространственную структуру.

При этом, разрушения первичной структуры белка не происходит.

Если исходить из структуры, то четвертичная структура белка — макромолекула. Множество функциональных белков состоит из полипептидных цепей, соединенных друг с другом несколькими главновалентными цепями. При этом ковалентные связи не наблюдаются.

Отдельную полипептидную цепь называют протомером, мономером или субъединицей, которая не отличается высокой функциональной активностью.

Эта способность появляется у белка при определенном варианте пространственного объединения мономеров. В результате возникает новое качество, не характерное для мономерного белка. Образующаяся в итоге молекула называется олигомером.

Специфика олигомерных белков

У олигомерных белков отмечаются следующие свойства:

К примеру, молекула гемоглобина включает две альфа- и две бета-полипептидные цепи. У этой молекулы форма тетрамера: это значит, что в ее состав входят 4 полипептидные цепи, регулярно взаимодействующие.

Каждая из этих цепей окружает специализированную группу гема-пигмента, которые отвечает за окрашивание крови в красный цвет. Молекула гемоглобина может подвергаться обратной диссоциации при определенных условиях. Формирование такого процесса происходит в результате влияния разрыва водородных связей. В случае, если мочевина и соли удаляются, исходная молекула гемоглобина подвергается автоматической ассоциации.

Стандартный пример олигомерной молекулы — вирус табачной мозаики, отличающийся гигантской молекулой. Длина этого вируса достигает 300 нм. Белковые частицы со спиралеобразной структурой (в ней содержится свыше 130 витков) нанизываются вокруг молекулы РНК.

У вируса есть невероятная способность: полная регенерация или восстановление четвертичной структуры. При этом наблюдается восстановление всех ее физических параметров и биологических функций.

Особенности функционирования четвертичной структуры

Внутри последовательности аминокислот есть информация, реализуемая на всех уровнях организации структуры молекулы белка.

У многих ферментов отмечается четвертичная структура. К примеру, фосфорилаза состоит из двух идентичных субъединиц, которые, в свою очередь, состоят из двух пептидных цепей. Из этого следует, что молекула — тетрамер. У отдельных субъединиц не наблюдается особенная каталитическая активность.

У любого регуляторного фермента — четвертичная структура и высокая скорость требуемых химических реакций в клетке.

Четвертичная структура белка довольно стабильна, хотя в отдельных случаях подвергается денатурации и последующему восстановлению (если выполняются некоторые условия вроде температуры, наличия катализаторов и др).

Характеристики четвертичной структуры белка

Для нескольких сотен белков четвертичная структура полностью расшифрована, хотя остается еще много белков с нерасшифрованной структурой. У этой структуры есть определенные характеристики:

Все вышеописанное позволяет говорить о существовании четвертичной структуры белка низшего порядка. У каждого белка — собственная уникальная структура и специализированные функции. Если человек постигнет структуру всех белков, то это даст возможность понять, как функционируют живые организмы. В результате такого научного поиска:

Некоторые ученые считают, что существует пятый уровень организации структуры белка. Имеются в виду полифункциональные макромолекулярные комплексы.

Ассоциат представляет собой макромолекулярный белковый комплекс.

В этом случае ферменты — метаболоны и олигомеры. Они отвечают за катализацию всего пути превращений субстрата в синтетазы высших кислот, дыхательную цепь и пируватдегидрогеназный комплекс.

Говоря о структуре белка кратко, на основе описанного выше, можно утверждать, что взаимодействие между отдельными молекулами внутри четвертичной структуры белка открывает возможности для изменений ее пространственной структуры.

Конформация — расположение атомов и групп молекул органического вещества, которое обусловлено возможностями вращения этих молекул вокруг ковалентных связей.

Эти изменения — основа биологической активности белковых полимеров.

Источник

§ 4. Структура и свойства белков

Сайт:Профильное обучение
Курс:Биология. 11 класс
Книга:§ 4. Структура и свойства белков
Напечатано::Гость
Дата:Среда, 8 Декабрь 2021, 15:57

Оглавление

Белки *(протеины)* — это полипептиды, в состав молекул которых входит множество остатков аминокислот (до нескольких тысяч). * Белки — нерегулярные биополимеры.* Они различаются количеством аминокислотных звеньев, их составом и последовательностью расположения. При этом каждый белок имеет особый, присущий только ему порядок чередования аминокислот.

Уровни структурной организации белковых молекул. Для того чтобы белок мог выполнять свою биологическую функцию, его молекула должна иметь определенную пространственную конфигурацию. Различают четыре основных уровня организации белковых молекул — первичную, вторичную, третичную и четвертичную структуры (рис. 4.1).

Первичная структура белка — это строго определенная последовательность аминокислотных остатков в линейной полипептидной цепи. Каждый белок обладает уникальной первичной структурой. Ее существование обусловлено наличием прочных пептидных связей между остатками аминокислот. Все последующие, более сложные структуры формируются на основе первичной. Поэтому изменение первичной структуры (например, замена одних аминокислотных остатков на другие) приводит к изменению формы молекулы, свойств и функций белка.

Вторичная структура белка формируется за счет образования многочисленных водородных связей между атомами водорода NH-групп и атомами кислорода CO-групп разных аминокислотных остатков. Несмотря на то что эти связи слабее ковалентных, их количество обеспечивает стабильность вторичной структуры.

Чаще всего водородные связи возникают внутри одной полипептидной цепи между близко расположенными остатками аминокислот, что приводит к закручиванию этой цепи в так называемую α-спираль.

Иногда водородные связи возникают между относительно удаленными друг от друга участками полипептидной цепи (или нескольких разных цепей). *Данные участки могут располагаться параллельно (если полипептидные цепи идут в одном направлении, например, от N-конца к C-концу) либо антипараллельно (если цепи имеют противоположное направление: одна идет от N-конца к С-концу, а соседняя наоборот).* При этом формируется складчатая структура, напоминающая гармошку. Такой тип вторичной структуры получил название β-складчатый слой (см. рис. 4.1).

*α-спиральные и β-структурные участки белковой молекулы могут взаимодействовать друг с другом и между собой, образуя упорядоченные структуры (ансамбли). Например, α-спиральные фрагменты могут объединяться в двойные или тройные спирали. На основе β-участков часто образуются структуры, имеющие вид шпилек, арок, зигзагов и др. Участки, имеющие α- и β- строение, могут формировать ансамбли состава αβ, βαβ, βαβαβ и т. п. Эти пространственные конфигурации представляют собой так называемую сверхвторичную структуру белка.

Ансамбли сверхвторичной структуры являются основой для формирования в молекулах белков доменов. Это структурно и функционально обособленные области, соединенные друг с другом короткими фрагментами полипептидной цепи — шарнирными участками.

Например, молекулы мембранных белков-рецепторов чаще всего состоят из трех доменов. Надмембранный домен обеспечивает прием внешних сигналов, внутримембранный закрепляет белок в мембране, подмембранный осуществляет передачу сигнала внутрь клетки. Другим примером может служить сывороточный альбумин — белок плазмы крови, способный связываться с высшими карбоновыми кислотами, билирубином, некоторыми токсинами и другими соединениями и доставлять их в те или иные органы. Молекула этого белка содержит три домена, каждый из которых отвечает за избирательное связывание с определенными веществами.*

Многие белки способны выполнять свои биологические функции, обладая третичной структурой. Но некоторым белкам для этого необходимо объединение в единый комплекс двух или более молекул, имеющих третичную структуру. Так возникает четвертичная структура белка. Молекулы, входящие в ее состав *(их называют субъединицами или протомерами)*, могут быть одинаковыми или разными. Они удерживаются вместе благодаря различным видам нековалентных связей — водородным, ионным, гидрофобным взаимодействиям и др. В некоторых белках, например иммуноглобулинах, к множеству таких связей добавляются несколько ковалентных дисульфидных. Примером белка, имеющего четвертичную структуру, может служить гемоглобин (рис. 4.3).

Многообразие и свойства белков. В зависимости от состава различают простые и сложные белки. Молекулы простых белков построены только из аминокислотных остатков *(кератин, коллаген, фибрин, альбумины крови и др.)*. В состав сложных белков, кроме того, входит какой-либо компонент неаминокислотной природы *— так называемая простетическая группа. Более подробная информация о сложных белках приведена в таблице 4.1.*

*Таблица 4.1. Основные группы сложных белков

Название

Простетическая группа

Примеры

ДНК-полимераза (содержит Mg 2+ ),
трансферрин (содержит Fe 3+ )

Казеин молока, вителлин яичного желтка

Антитела ( иммуноглобулины ), муцин слюны

Тромбопластин, липопротеины клеточных мембран

Окрашенный небелковый компонент (пигмент)

Что можно точно утверждать о белках обладающих четвертичной структуройПо форме молекул выделяют две группы белков — фибриллярные и глобулярные. Фибриллярными называют белки, молекулы которых имеют вытянутую, нитевидную форму (рис. 4.4). Это, например, коллаген, кератин, миозин. Молекулы глобулярных белков имеют округлую форму. К этой группе относятся альбумины и глобулины крови, гемоглобин и др.

Многие белки хорошо растворяются в воде, однако среди них есть и нерастворимые — кератин, фибрин и др. Известно, что глобулярные белки в основном являются водорастворимыми, а фибриллярные, как правило, в воде не растворяются.

Белки чувствительны к внешним воздействиям: изменение химического состава среды, температуры и других факторов вызывает изменение их структуры и свойств. Действие высоких и низких температур, сильных кислот и щелочей, ионов тяжелых металлов, ультрафиолетового излучения, радиации ведет к разрушению связей, стабилизирующих пространственную конфигурацию белков. Вследствие разрыва водородных, ионных, дисульфидных и других связей белок может последовательно утратить свою четвертичную, третичную и даже вторичную структуру. Процесс нарушения природной структуры белка под влиянием внешних факторов без разрушения его первичной структуры называется денатурацией (рис. 4.5).

Что можно точно утверждать о белках обладающих четвертичной структурой

Пространственная структура белка определяет его физико-химические свойства и биологические функции. Поэтому денатурация приводит не только к изменению размеров и формы молекул белка, но и его свойств, например растворимости. Неполярные гидрофобные группы, которые располагались внутри молекулы, оказываются на ее поверхности, и белок становится менее гидрофильным. Важно то, что в результате денатурации белки теряют способность выполнять свои функции.

Степень денатурации белка зависит от силы воздействия на него различных факторов: чем интенсивнее их действие, тем глубже денатурация. В ряде случаев она становится необратимой. Однако если фактор, вызвавший денатурацию, действовал непродолжительно, то после прекращения его воздействия белок может восстановить свою природную структуру, свойства и функции. Такое явление называется ренатурацией. Развернутая полипептидная цепь способна самопроизвольно восстановить вторичную структуру, а затем уложиться в третичную. Это означает, что пространственная конфигурация белка определяется его первичной структурой, т. е. последовательностью аминокислотных остатков. Если же воздействие на белок было слишком жестким и привело к разрыву пептидных связей, возвращение белковой молекулы к исходной структуре становится невозможным.

*Большинство белков денатурирует при нагревании выше 50—60 °С. Но, например, денатурация сократительных белков мышц начинается уже при 45—50 °С, а яичный белок денатурирует при температуре 60—70 °С. Белки некоторых термофильных бактерий, обитающих в горячих источниках, могут полноценно функционировать при температурах выше 90 °С!

Явление денатурации широко используется в медицине, биохимических исследованиях, пищевой промышленности и других сферах деятельности человека.

Применение таких антисептиков, как спирт, хлорамин, формалин и т. п., основано на том, что они вызывают денатурацию белков и, вследствие этого, гибель микроорганизмов. То же самое происходит под действием высоких температур при стерилизации медицинских инструментов и материалов. Ультрафиолетовое излучение используется в качестве денатурирующего агента для дезинфекции помещений, промышленного обеззараживания воды и т. д.

Денатурацию белков может вызвать и присоединение к ним ионов тяжелых металлов. При этом они прочно связываются с выпадающим в осадок денатурированным белком. Поэтому при пищевом отравлении соединениями ртути, свинца, меди пострадавшему как можно быстрее дают выпить молоко или раствор яичного белка для того, чтобы ограничить дальнейшее всасывание токсичных веществ.

Осаждение белков при денатурации также применяется в лабораторной практике. Оно позволяет удалять белки из различных жидкостей биологического происхождения (например, плазмы крови, ликвора), что облегчает процессы выделения и анализа других веществ, входящих в состав таких жидкостей. Кроме того, осаждение белков используется для определения их количественного содержания в биологическом материале.

*Радикалы ряда аминокислот, входящих в состав белковой молекулы, содержат оснóвные и кислотные функциональные группы. Поэтому белки, как и аминокислоты, являются амфотерными соединениями. Амфотерность придает белкам буферные свойства.

Снижение кислотности среды усиливает диссоциацию групп —СООН. При этом высвобождаются дополнительные ионы водорода и заряд белковой молекулы становится отрицательным. Таким образом, белки способны в определенной степени поддерживать уровень рН среды. Например, альбумины и глобулины участвуют в поддержании слабощелочной реакции плазмы крови (совместно с другими буферными системами).*

*При определенном значении pH количество положительно и отрицательно заряженных групп в молекуле белка становится одинаковым, и его суммарный электрический заряд оказывается равным нулю. Такое значение pH называют изоэлектрической точкой белка (см. рис. 4.6). Каждый белок имеет определенное значение изоэлектрической точки, которое определяется аминокислотным составом. Изоэлектрические точки белков, в составе которых преобладают остатки кислых аминокислот, располагаются в области pH 7.

У большинства белков значение изоэлектрической точки находится в пределах 5,5—7,0. Но, например, для пепсина (фермента желудочного сока) величина изоэлектрической точки равна 1, а для сальмина (белка, содержащегося в молóках семги) — почти 12.

Чем больше значение рН среды отличается от изоэлектрической точки, тем больший заряд имеет белок. Из-за этого между белковыми молекулами существует электростатическое отталкивание, препятствующее их слипанию (агрегации). В изоэлектрической точке силы отталкивания минимальны. Из-за этого белки наименее устойчивы в растворе, их молекулы легко слипаются и выпадают в осадок.*

Что можно точно утверждать о белках обладающих четвертичной структурой

Что можно точно утверждать о белках обладающих четвертичной структурой

1. Охарактеризуйте уровни структурной организации белков. Какие химические связи обусловливают существование и стабильность первичной, вторичной, третичной и четвертичной структур белков?

2. Чем простые белки отличаются от сложных? Фибриллярные от глобулярных? Приведите примеры фибриллярных и глобулярных белков.

3. Как называется процесс нарушения природной структуры белка, при котором сохраняется его первичная структура? Действие каких факторов может приводить к нарушению структуры белковых молекул?

4. За счет чего белки обладают буферными свойствами? Каким образом они участвуют в поддержании определенной кислотности среды?

5*. Докажите, что пространственная структура белка определяет его физико-химические свойства и биологические функции.

Что можно точно утверждать о белках обладающих четвертичной структурой

Наблюдение денатурации белка

Вспомните, как тепловая обработка влияет на цвет яичного белка и его растворимость в воде. Очевидно, что свойства белка изменяются вследствие его денатурации под действием высокой температуры.

Налейте в стакан немного молока и добавьте в него 1—2 мл уксуса (лимонного сока или раствора лимонной кислоты).

● Как изменилась растворимость казеина — основного молочного белка?

● Как вы думаете, что произошло с молекулами казеина?

● Подобное явление происходит и при обычном скисании молока. Вспомните, под воздействием каких микроорганизмов происходит этот процесс. Какое вещество является денатурирующим агентом?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *