Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.
Философские предпосылки к открытию закона были заложены ещё античными философами, а также Декартом и М. В. Ломоносовым.
В письме к Эйлеру Ломоносов формулирует свой «всеобщий естественный закон» (5 июля 1748 года), повторяя его в диссертации «Рассуждение о твердости и жидкости тел» (1760) [1] [2] :
. Все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимется, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте. Сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает [3]
Некоторые из законов сохранения выполняются всегда и при всех условиях (например, законы сохранения энергии, импульса, момента импульса, массы, электрического заряда), или, во всяком случае, никогда не наблюдались процессы, противоречащие этим законам. Другие законы являются лишь приближёнными и выполняющимися при определённых условиях (например, закон сохранения чётности выполняется для сильного и электромагнитного взаимодействия, но нарушается в слабом взаимодействии).
Законы сохранения связаны с симметриями физических систем (теорема Нётер). Так, законы сохранения энергии, импульса и момента импульса являются следствиями пространственно-временных симметрий (соответственно: однородности времени, однородности и изотропности пространства). При этом перечисленные свойства пространства и времени в аналитической механике принято понимать как инвариантность лагранжиана относительно изменения начала отсчета времени, переноса начала координат системы и вращения ее координатных осей.
Литература
См. также
Примечания
Полезное
Смотреть что такое «Законы сохранения» в других словарях:
ЗАКОНЫ СОХРАНЕНИЯ — ЗАКОНЫ СОХРАНЕНИЯ, физические законы, согласно которым некоторое свойство замкнутой системы остается неизменным при каких либо изменениях в системе. Самыми важными являются законы сохранения вещества и энергии. Закон сохранения вещества… … Научно-технический энциклопедический словарь
законы сохранения — [laws of conservation] физические закономерности, согласно которым численные значения некоторых физичических величин не изменяются со временем в любых процессах или в определенном классе процессов. Важнейшими, справедливыми для любых… … Энциклопедический словарь по металлургии
СОХРАНЕНИЯ ЗАКОНЫ — физич. закономерности, согласно к рым численные значения нек рых физ. величин не изменяются со временем в любых процессах или в определ. классе процессов. Полное описание физ. системы возможно лишь в рамках динамич. законов, к рые детально… … Физическая энциклопедия
СОХРАНЕНИЯ ЗАКОНЫ — СОХРАНЕНИЯ ЗАКОНЫ, наиболее общие физические законы, согласно которым численные значения некоторых физических величин, характеризующих физическую систему, при определенных условиях не изменяются с течением времени при различных процессах в этой… … Современная энциклопедия
СОХРАНЕНИЯ ЗАКОНЫ — законы, согласно которым численные значения некоторых физических величин не изменяются с течением времени при различных процессах. Важнейшие законы сохранения законы сохранения энергии, импульса, момента количества движения, электрического заряда … Большой Энциклопедический словарь
Сохранения законы — в аэро и гидродинамике фундаментальные законы механики, сформулированные для движущейся сплошной среды и выражающие собой законы сохранения массы, импульса и энергии. Если поверхностные интегралы с помощью формулы Грина выразить через объёмные и… … Энциклопедия техники
СОХРАНЕНИЯ ЗАКОНЫ — законы, согласно к рым численные значения нек рых физ. величин не изменяются с течением времени в любых процессах или в определ. классе процессов. Важнейшие С. з., справедливые для любых изолиров. систем, законы сохранения энергии, импульса,… … Естествознание. Энциклопедический словарь
сохранения принципы — СОХРАНЕНИЯ ПРИНЦИПЫ особый класс научных принципов, отображающих постоянство фундаментальных свойств или отношений природы. В структуре физических теорий С. п. формулируются как законы сохранения и как принципы инвариантности. В настоящее … Энциклопедия эпистемологии и философии науки
СОХРАНЕНИЯ ПРИНЦИПЫ — утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К числу С. п. относятся, напр. известные в физике законы сохранения – энергии, массы, импульса, момента импульса,… … Философская энциклопедия
Сохранения законы — физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённом классе процессов. Полное описание физической системы возможно лишь в рамках… … Большая советская энциклопедия
В этот раз мы замахнемся на святое: на законы сохранения, в том числе на закон сохранения энергии. Правда, вечного двигателя я вам не обещаю.
Закон сохранения энергии имеет такой ореол святости, что практически любой человек напрягается, услышав, что с ним не все хорошо. Между тем, энергия сохраняется в механике, в квантовой механике и даже в СТО – Специальной Теории Относительности. Но… не в ОТО – Общей Теории Относительности. Однако сказать, что энергия не сохраняется, тоже нельзя. Вначале разберемся,
Что же такое – сохраняться?
Вот мы положили в мешок два шара, синий и красный. Через какое-то время достали их. Ага, было два шара, и стало два шара, шары сохраняются в мешке! Так выглядит пространственно — временная картина этого эксперимента:
Однако с количеством шаров все просто – все наблюдатели, как бы они ни двигались, согласятся с тем, что шаров – два. А как быть с энергией? Вот, например, я стою около дома весом 1000 тонн. Кинетическая энергия его в моей системе отсчета равна нулю. Теперь я пойду от дома со скоростью 1 метр в секунду. В моей системе отсчета дом приобрел огромную энергию! Как я, слабый человек, мог дать дому такую энергию всего одним шагом?
Если вы внимательно следили за руками, то, несомненно, заметили, что я совершил грязный хак. Считал энергию вначале в одной системе отсчёта, а потом нагло перескочил в другую. Так делать нельзя. Для энергии состояние до и состояние после должно быть привязано к одной и той же системе отсчета.
Для нашей картинки с шарами это означает, что дно и крышка цилиндра (в общем случае любой фигуры) должны быть параллельны друг другу. А вот с этим в искривленном пространстве плохо: как вы помните, в искривленном пространстве могут быть много параллельных или не быть ни одной! Хуже того, пространство может быть таким кривым, что туда вообще не вписать такую фигуру!
Или время закольцовано – и понятия до и после не вполне определены. Таким образом, в ОТО не то, чтобы энергия не сохраняется, а само понятие “сохраняться” плохо определено.
Канонический пример несохранения энергии
Мы все знаем, что Вселенная расширяется. Когда ее линейный размер увеличивается в 10 раз, то ее объем увеличивается в 1000 раз, и плотность обычного вещества (ведь атомы – это шарики, и все наблюдатели согласны с тем, сколько их) падает тоже в 1000 раз
А вот плотность излучения, в частности реликтового излучения, падает в 10000 раз – помимо того, что фотоны рассеялись в большем объеме, каждый из них еще и покраснел. То есть плотность вещества падает как третья степень, а излучения – как четвертая.
У этого есть интересное следствие – если мы будем двигаться в прошлое, то плотность излучения будет расти быстрее, чем плотность материи, и мы можем дойти до периода, когда плотностью и давлением обычной материи можно будет вообще пренебречь. Гравитация в основном создавалась давлением фотонного газа.
Следует заметить, что космологическая точка зрения – “вся вселенная в такое-то время”, несмотря на ее интуитивную понятность и полезность, для каждого времени после Большого Взрыва образует в пространстве-времени кривую поверхность, то есть не является валидной системой отсчета.
Можно ли поднять себя за волосы?
Спойлер: ДА. Импульс, как вы догадались, тоже не сохраняется. Вы можете погуглить по словам Swimming in space. Вот видео, как это выглядит. Конечно, практической ценности в этом почти нет, но все равно интересно.
Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:
Обозначение – \( p \) , единицы измерения – (кг·м)/с.
Импульс тела – это количественная мера движения тела. Направление импульса тела всегда совпадает с направлением скорости его движения. Изменение импульса тела равно разности конечного и начального значений импульса тела:
где \( p_0 \) – начальный импульс тела, \( p \) – конечный импульс тела.
Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.
Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.
Обозначение – \( F\!\Delta t \) , единицы измерения — Н·с. Импульс силы равен изменению импульса тела:
Направление импульса силы совпадает по направлению с изменением импульса тела.
Второй закон Ньютона (силовая форма):
Важно! Следует всегда помнить, что совпадают направления векторов:
Импульс системы тел
Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:
При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой.
Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы. \( F_1,F_2,F_3 \) – внешние силы, действующие на тела; \( F_<12>, F_<23>, F_<31>, F_<13>, F_<21>, F_ <32>\) – внутренние силы, действующие между телами. Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:
В левой части каждого уравнения стоит изменение импульса тела за малое время \( \Delta t \) . Обозначим: \( v_0 \) – начальные скорости тел, а \( v^ <\prime>\) – конечные скорости тел. Сложим левые и правые части уравнений.
Но силы взаимодействия любой пары тел в сумме дают нуль.
Важно! Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.
Закон сохранения импульса
Закон сохранения импульса Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:
Замкнутая система – это система, на которую не действуют внешние силы. Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций. При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.
Закон сохранения импульса для абсолютно упругого удара:
Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.
Закон сохранения импульса для абсолютно неупругого удара:
Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части. Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета. Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.
Реактивные двигатели Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями. Реактивные двигатели делятся на два класса:
В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.
Ракетный двигатель на твердом топливе При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.
Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.
Ракетный двигатель на жидком топливе
В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр. Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.
Воздушно-реактивный двигатель
В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор. Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.
Алгоритм применения закона сохранения импульса к решению задач:
Работа силы
Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.
Обозначение – \( A \) , единицы измерения – Дж (Джоуль).
1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:
Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.
Зависимость механической работы от угла \( \alpha \)
На графике зависимости \( F=F(S) \) работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.
Формулы для вычисления работы различных сил
Работа силы тяжести:
Работа силы упругости:
Коэффициент полезного действия механизма (КПД) — это физическая величина, равная отношению полезной работы, совершенной механизмом, ко всей затраченной при этом работе. Обозначение – \( \eta \) , единицы измерения – %.
\( A_<\mathit<пол.>> \) – полезная работа – это та работа, которую нужно сделать; \( A_<\mathit<зат.>> \) – затраченная работа – это та работа, что приходится делать на самом деле.
Важно! КПД любого механизма не может быть больше 100%.
Мощность
Мощность – это количественная мера быстроты совершения работы.
1 Вт – это мощность, при которой за 1 с совершается работа в 1 Дж:
1 л. с. (лошадиная сила) = 735 Вт.
Связь между мощностью и скоростью равномерного движения:
Таким образом, мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов.
Важно! Если интервал времени стремится к нулю, то выражение представляет собой мгновенную мощность, определяемую через мгновенную скорость.
Работа как мера изменения энергии
Если система тел может совершать работу, то она обладает энергией.
Работа и изменение кинетической энергии (теорема о кинетической энергии)
Если под действием силы тело совершило перемещение и вследствие этого его скорость изменилась, то работа силы равна изменению кинетической энергии. Силы, работа которых не зависит от формы траектории, называются консервативными.
Работа и изменение потенциальной энергии тела, поднятого над землей
Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.
Работа и изменение потенциальной энергии упруго деформированного тела
Работа силы упругости равна изменению потенциальной энергии, взятому с противоположным знаком.
Кинетическая энергия
Кинетическая энергия – это энергия, которой обладает тело вследствие своего движения.
Обозначение – \( W_k (E_k) \) , единицы измерения – Дж.
Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:
Важно! Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от выбора системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.
Потенциальная энергия
Потенциальная энергия – это энергия взаимодействия тел или частей одного и того же тела.
Обозначение – \( W_p (E_p) \) , единицы измерения – Дж.
Потенциальная энергия тела, поднятого на некоторую высоту над землей, равна произведению массы тела, ускорения свободного падения и высоты, на которой он находится:
Потенциальная энергия упруго деформированного тела равна половине произведения жесткости на квадрат удлинения:
Важно! Величина потенциальной энергии зависит от выбора нулевого уровня. Нулевым называется уровень, на котором потенциальная энергия равна нулю. Нулевой уровень выбирается произвольно, исходя из удобства решения задачи.
Закон сохранения механической энергии
Полная механическая энергия – это энергия, равная сумме кинетической и потенциальной энергий.
Обозначение – \( W (E) \) , единицы измерения – Дж.
Закон сохранения механической энергии В замкнутой системе тел, между которыми действуют только консервативные силы, механическая энергия сохраняется, т. е. не изменяется с течением времени:
Если между телами системы действуют кроме сил тяготения и упругости другие силы, например сила трения или сопротивления, действие которых приводит к превращению механической энергии в тепловую, то в такой системе тел закон сохранения механической энергии не выполняется.
Важно! В случае, если кроме консервативных сил (тяжести, упругости, тяготения) существуют еще и неконсервативные силы, например сила трения, а также внешние силы, то
Теорема о кинетической энергии справедлива для сил любой природы:
Если на систему тел действуют неконсервативные и внешние силы, то изменение полной энергии равно сумме работ неконсервативных и внешних сил.
Закон сохранения и превращения энергии Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому.