Что изучает наука сопротивление материалов

iSopromat.ru

Что изучает наука сопротивление материалов

Сопротивление материалов

Что изучает наука сопротивление материалов

Сопротивление материалов (сокр. — сопромат) — это инженерная наука, изучающая методы расчёта элементов машин и сооружений на прочность, жесткость и устойчивость для обеспечения их надежной и безопасной эксплуатации.

Другими словами, сопромат — это грамотное проектирование конструкций.

Сопромат — наука о прочности

С точки зрения сопромата, машины и сооружения должны быть прочными и надежными, но при этом желательно, чтобы они были как можно легче и дешевле.

Видео о том, что такое сопромат и для чего он нужен:

Сопротивление материалов — раздел технической механики, в котором изучаются экспериментальные и теоретические основы и методы расчета наиболее распространенных элементов различных конструкций, находящихся под воздействием внешних нагрузок, на прочность, жесткость и устойчивость, с учетом требований надежности, экономичности, технологичности изготовления, удобства транспортировки и монтажа, а также безопасности при эксплуатации.

Сопротивление материалов является одной из фундаментальных дисциплин общеинженерной подготовки специалистов в сфере высшего технического образования.

База знаний для изучения сопромата

Студенты высших технических учебных заведений приступают к изучению дисциплины «Сопротивление материалов» после освоения курса теоретической механики. Кроме того необходимы базовые знания физики и высшей математики.

Основные характеристики и строение металлов рассматривается в курсе материаловедения.

Объект изучения

В сопромате главным объектом для расчета является брус, нагруженный системой внешних усилий (сил, моментов и распределенных нагрузок).

Для него могут проводится следующие виды расчетов:

Расчет на прочность является основным, т.к. абсолютно все конструкции должны быть прочными.

При расчетах на жесткость определяются деформации бруса и перемещение его сечений, на основании чего делается заключение о жесткости бруса. При невыполнении условия жесткости определяются необходимые размеры сечения.

Структура курса «Сопротивление материалов»

Курс сопротивления материалов в ВУЗах имеет, как правило, следующую структуру:

Изучение дисциплины включает выполнение расчетно-графических и лабораторных работ с последующей защитой, после чего студенты сдают экзамен.

Учебные материалы по сопромату

Для успешного освоения данного курса предлагаем следующие материалы для самостоятельного изучения:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Сопротивление материалов

Что изучает наука сопротивление материалов

Что изучает наука сопротивление материалов

Сопротивление материалов (в обиходе — сопромат) — часть механики деформируемого твёрдого тела, которая рассматривает методы инженерных расчётов конструкций на прочность, жесткость и устойчивость при одновременном удовлетворении требований надежности, экономичности и долговечности. Сопротивление материалов относится к фундаментальным дисциплинам общеинженерной подготовки специалистов с высшим техническим образованием, за исключением специальностей, не связанных с проектированием объектов, для которых прочность является важным показателем.

Содержание

Определение

Сопротивление материалов базируется на понятии «прочность», что является способностью материала противостоять приложенным нагрузкам и воздействиям без разрушения. Сопротивление материалов оперирует такими понятиями как: внутренние усилия, напряжения, деформации. Приложенная внешняя нагрузка к некоторому телу порождает внутренние усилия в нём, противодействующие активному действию внешней нагрузки. Внутренние усилия, распределенные по сечениям тела называются напряжениями. Таким образом, внешняя нагрузка порождает внутреннюю реакцию материала, характеризующуюся напряжениями,которые в свою очередь прямо пропорциональны деформациям тела. Деформации бывают линейные такие как удлинение,укорочение, сдвиг и углы поворота сечений. Основные понятия сопротивления материалов оценивающие способность материала сопротивляться внешним воздействиям являются:

Связь с другими науками

В теоретической части сопротивление материалов базируется на математике и теоретической механике, в экспериментальной части — на физике и материаловедении и применяется при проектировании машин, приборов и конструкций. Практически все специальные дисциплины подготовки инженеров по разным специальностям содержат разделы курса сопротивления материалов, так как создание работоспособной новой техники невозможно без анализа и расчета её прочности, жёсткости и надёжности.

Задачей сопротивления материалов, как одного из разделов механики сплошной среды, является определение деформаций и напряжений в твёрдом упругом теле, которое подвергается силовому или тепловому воздействию.

Эта же задача среди других рассматривается в курсе теории упругости. Однако методы решения этой общей задачи в том и другом курсах существенно отличаются друг от друга. Сопротивление материалов решает её главным образом для бруса, базируясь на ряде гипотез геометрического или физического характера. Такой метод позволяет получить, хотя и не во всех случаях, вполне точные, но достаточно простые формулы для вычисления напряжений. Также поведением деформируемых твёрдых тел под нагрузкой занимается теория пластичности и теория вязкоупругости.

Гипотезы и допущения

Расчет конструкций и их элементов является или теоретически невозможным, или практически неприемлемым по своей сложности. Поэтому в сопротивлении материалов существует модель идеализированного деформируемого тела.

Эти положения ограниченно применимы к решению конкретных закдач. Например, для решения задач устойчивости утверждения 4-6 не справедливы, утверждение 3 справедливо не всегда.

Теории прочности

Прочность конструкций определяется с использованием теории разрушения — науки о прогнозировании условий, при которых твердые материалы разрушаются под действием внешних нагрузок. Материалы, как правило, подразделяются на разрушающиеся хрупко и пластично. В зависимости от условий (например, температура, состояние напряжений, виды нагрузки) большинство материалов может быть отнесено к хрупким или пластичным или обоим видам одновременно. Тем не менее, для большинства практических ситуаций, материалы могут быть классифицированы как хрупкие или пластичные. Несмотря на то, что теория разрушения находится в разработке уже более 200 лет, уровень её приемлемости для механики сплошных сред, не всегда достаточен.

В математических терминах, теория разрушения выражается в виде различных критериев разрушения, которые справедливы для конкретных материалов. Критерием разрушения является поверхность разрушения, выраженная через напряжения или деформации. Поверхность разрушения разделяет «поврежденное» и «не поврежденное» состояния. Для «поврежденного» состояния трудно дать точное физическое определение. Поэтому это понятие следует рассматривать как рабочее определение, используемое в инженерном сообществе. Термин «поверхность разрушения», используемый в теории прочности, не следует путать с аналогичным термином, который определяет физическую границу между поврежденными и не поврежденными частями тела. Довольно часто феноменологические критерии разрушения одного и того же вида используются для прогнозирования хрупкого и пластичного разрушения.

Среди феноменологических теорий прочности наиболее известными являются следующие теории, которые принято называть «классическими» теориями прочности:

1. Теория наибольших нормальных напряжений.

2. Теория наибольших деформаций.

3. Теория наибольших касательных напряжений Треска (Tresca).

4. Теория наибольшей удельной потенциальной энергии формоизменения фон Мизеса (von Mises).

Классические теории прочности имеют существенные ограничения для их применения. Так теории наибольших нормальных напряжений и наибольших деформаций применимы лишь для расчета прочности хрупких материалов, причём только для некоторых определённых условий нагружения. Поэтому эти теории прочности сегодня применяют весьма ограниченно. Из перечисленных теорий наиболее часто используют теорию Мора, которую также называют критерием Мора-Кулона. Кулон (Coulomb) в 1781 г. на основе выполненных им испытаний установил закон сухого трения, который использовал для расчета устойчивости подпорных стенок. Математическая формулировка закона Кулона совпадает с теорией Мора, если в ней выразить главные напряжения через касательные и нормальные напряжения на площадке среза. Достоинством теории Мора является то, что она применима к материалам, имеющим разные сопротивления сжатию и растяжению, а недостатком то, что она учитывает влияние только двух главных напряжений — максимального и минимального. Поэтому теория Мора не точно оценивает прочность при трехосном напряженном состоянии, когда необходимо учитывать все три главных напряжения. Кроме того, при использовании эта теория не учитывается поперечное расширение (дилатацию) материала при сдвиге. На эти недостатки теории Мора неоднократно обращал внимание А. А. Гвоздев, который доказал неприменимость теории Мора для бетона [2].

На смену «классическим» теориям прочности в современной практике пришли многочисленные новые новые теории разрушения. Большинство из них используют различные комбинации инвариантов тензора напряжений Коши (Cauchy) Среди них наиболее известны следующие критерии разрушения:

Перечисленные критерии прочности предназначены для расчета прочности однородных (гомогенных) материалов. Некоторые из них используются для расчёта анизотропных материалов.

Для расчета прочности неоднородных (не гомогенных) материалов используется два подхода, называемые макро-моделированием и микро-моделированием. Оба подхода ориентированы на использование метода конечных элементов и вычислительной техники. При макро-моделировании предварительно выполняется гомогенизация — условная замена неоднородного (гетерогенного) материала на однородный (гомогенный). При микро-моделировании компоненты материала рассматриваются с учётом их физических характеристик. Микро-моделирование используют в основном в исследовательских целях, так как расчет реальных конструкций требует чрезмерно больших затрат машинного времени. Методы гомогенизации широко используются для расчета прочности каменных конструкций, в первую очередь для расчета стен-диафрагм жесткости зданий. Критерии разрушения каменных конструкций учитывают многообразные формы разрушения каменной кладки. Поэтому поверхность разрушения, как правило. принимается в виде нескольких пересекающихся поверхностей, которые могут иметь разную геометрическую форму.

Применение

Методы сопротивления материалов широко используются при расчете несущих конструкций зданий и сооружений, в дисциплинах связанных с проектированием деталей машин и механизмов.

Как правило, именно из-за оценочного характера результатов, получаемых с помощью математических моделей этой дисциплины, при проектировании реальных конструкций все прочностные характеристики материалов и изделий выбираются с существенным запасом (в несколько раз относительно результата, полученного при расчетах).

В студенческой среде сопротивление материалов считается одной из наиболее сложных общепрофессиональных дисциплин, что дало богатую пищу студенческому фольклору и породило целый ряд шуток и анекдотов.

См. также

Литература

Источник

Сопромат или сопротивление материалов

Сопромат (сопротивление материалов) — инженерная дисциплина, которая является введением в науку о прочности, жесткости и устойчивости конструкций.

Сопромат — это важная дисциплина в высших технических учебных заведениях. Изучение этой дисциплины направлено на развитие творческих способностей будущих специалистов, на приобретение специальных навыков для предстоящей профессиональной деятельности. Перед началом любого строительства (зданий, сооружений, любых конструкций, машин) разрабатывается проект, выбираются материалы, рассчитываются габариты элементов, основные размеры. В сопромате учитываются величины и характеристики сил, которые будет воспринимать каждый элемент сооружения, условия эксплуатации. Это необходимо, чтобы создаваемая конструкция, раньше времени, не деформировалась и не разрушалась. Имея минимальные размеры отдельных деталей она должна быть достаточно надежной.

В этой статье поговорим более подробно о задачах, которые решает сопромат, о нагрузках и деформациях, изучаемых в рамках дисциплины. Рассказу об элементах конструкций, которые рассчитываются в сопротивлении материалов, зачем нужен этот предмет будущему инженеру, а также о курсах по сопромату, которые есть на сайте.

Основные задачи сопромата

Прикладная наука о сопротивлении материалов решает несколько задач.

Прочность

Конструкция (ее отдельные детали) считается прочной, если она способна противостоять воздействию внешних нагрузок, не разрушаясь. Вводится понятие запаса прочности — обеспечение целостности конструкции при нагрузках, превышающих расчетные.

Что изучает наука сопротивление материалов

Жесткость

Жесткость — способность конструкции, её элементов, материала, из которого они созданы, сопротивляться изменению первоначальных размеров и форм. Расчетами на жесткость определяются оптимальные размеры, формы и материал конструкций.

Что изучает наука сопротивление материалов

Устойчивость

Под устойчивостью в сопромате понимается способность конструкции, под воздействием приложенных сил, сохранять требуемое равновесие. Колонна (длинный стержень) может отвечать требованиям прочности, жесткости, но не выдерживать нагрузок вдоль оси и изогнуться — потеря устойчивости.

Для решения этих задач используется схема для расчетов (условное изображение конструкции). Создаваемые конструкции часто имеют сложные формы, для упрощения расчетов, она разбивается на отдельные элементы:

Главным элементом при расчетах в сопромате является брус (поперечное сечение мало по сравнению с его длиной). Брусья подразделяются на колонны, балки, стержни, в зависимости от их предназначения.

Что изучает наука сопротивление материалов

Нагрузки и деформации изучаемые в сопромате

Нарушение форм и размеров элементов конструкций происходит под воздействием внешних нагрузок:

Под действием этих сил конструктивные элементы подвергаются различным деформациям, изменяются их изначальные формы, заданные размеры. Различают несколько основных видов деформаций:

Растяжение и сжатие

Это самые простые и наиболее часто встречающиеся виды деформаций. Они возможны, когда силы, приложенные к брусу (к его концам) направлены вдоль оси, навстречу друг другу. В одном случае действующие силы стремятся уменьшить размер бруса, в другом — увеличить. Растяжению и сжатию подвергаются различные элементы конструкций:

Что изучает наука сопротивление материалов

Кручение

В сопротивлении материалов рассматривается данный вид нагружения, возникающий во взаимном повороте поперечных сечений стержня относительно друг друга. Деформация происходит под воздействием имеющихся пар сил, называемых моментами. Момент — это произведение силы на ее плечо. Плечом принято называть перпендикуляр, опущенный от оси вращения бруска к линии ее действия. Вращающиеся и работающие на кручение бруски получили наименование валов. Моменты работают в плоскости, находящейся под прямым углом к оси вала.

Моменты приложенных пар сил называются внешними (скручивающими). Они могут находиться в определенном сечении вала или быть распределенными на некотором участке. Пары сил обычно создают нагрузку в тех местах, где на вал насаживаются зубчатые колеса, шкивы, шестерни и т.д. Если вал уравновешен, сумма всех действующих на него моментов приравнивается к нулю.

Что изучает наука сопротивление материалов

Изгиб

Одним из самых популярных разделов в сопротивлении материалов считается рассмотрение деформаций при изгибе. У большинства специалистов когда-либо изучавших эту дисциплину, она ассоциируется с расчетом балок и построением эпюр по их результатам. В технических ВУЗах этому разделу уделяется большое внимание. Ему посвящается не менее шестой части содержания в каждом учебнике сопромата и этому есть объяснение.

Фактически все детали конструкций, одни больше, другие меньше, подвергаются воздействию сил, вызывающих данный тип деформации. Более того, знание процессов, имеющих место при прямом, по другому — поперечном изгибе, способствует лучшему усвоению протекающих процессов, происходящих при других более сложных видах деформаций (внецентренном сжатии или растяжении). При анализе этого вида деформации рассчитываются балки (горизонтальный брус) и рамы. В обоих случаях, по результатам расчетов, создаются графики, проверяется соответствие требуемой прочности, или в соответствии с заданной прочностью подбираются оптимальные размеры элементов конструкций.

Что изучает наука сопротивление материалов

В сопротивлении материалов это малая часть того, что требуется делать с различными конструкциями при их расчете. Это всего лишь начальный этап. Большое внимание, при деформации, уделяется перемещению поперечных сечений отдельных элементов. Их определение считается более сложным чем при других видах деформаций, так как кроме перемещения в вертикальной плоскости имеет место поворот на определенный угол.

Элементы конструкций

В курсе сопротивление материалов, все методики расчетов, основные законы рассматриваются на примере нескольких типов элементов, из которых формируются реальные конструкции. Глобально все элементы можно подразделить на следующие виды:

В инженерной практике и при решении задач по сопромату, чаще всего, приходится работать со стержнями или стержневыми системами.

В зависимости от деформации, которую испытывает стержень, рассчитываемому объекту можно присвоить свое название. Например, стержень, который работает на растяжение или сжатие, называют брусом. А стержень, который работает на изгиб – балкой. Некоторые типы стержневых систем, тоже имеют свои уникальные названия. Например, система, состоящая из стержней, которые жестко соединены между собой и преимущественно работают на изгиб, именуется как рама. В свою очередь, система у которой стержни соединены шарнирно и работают на растяжение (сжатие), принято называть фермами.

Зачем нужен сопромат?

Представление о сопротивлении материалов необходимо иметь любому человеку. Эти знания нужны даже при строительстве простого сарая, чтобы в нем кого-нибудь не придавило. В последнее время важность сопромата только возрастает, так как строятся все более крупные сооружения, высотные здания. Создаются новейшие конструкции самолетов, кораблей, машин. Подвижные детали узлов работают на все более высоких скоростях, при возрастающих мощностях, давлениях и температурах. При строительстве используются новые, мало изученные материалы, созданные с применением новых технологий.

Сложные по началу задачи дисциплины становятся привычными при систематическом решении задач, проведении занятий на практике. На место страха перед сложной дисциплиной приходит опыт и уверенность в своих силах.

Современные расчеты

Давайте поговорим немного о современных методах расчета. Понятно, что в 21 веке, никто, вручную, рассчитывать инженерные сооружения, детали машин и т.д. уже не будет. Так как для этого есть достаточно быстрые и мощные компьютеры. Задачей же инженера является – правильная постановка задачи ЭВМ. Кроме того, проектировщик должен уметь правильно считывать показания машины, анализировать полученные значения и принимать правильные решения при проектировании. Все эти навыки, молодому специалисту помогает развить такая дисциплина как сопротивление материалов.

Курсы по сопротивлению материалов

В этом блоке статьи поговорим о полезных уроках, которые размещены на нашем сайте проекта –SoproMats. Все материалы разбиты на два курса – для чайников и для продвинутых студентов.

Курс для чайников

В курс для чайников попадают все те материалы, которые рядовые студенты учат в первом семестре изучения сопромата. Кроме того, все статьи данного курса написаны максимально просто и доступно, чтобы любой желающий мог освоить азы сопротивления материалов. В рамках курса рассмотрены задачи на простейшие виды деформаций: растяжение и сжатие, кручение и изгиб. Изучив материалы курса, вы научитесь находить реакции опор (связей), строить эпюры, подбирать размеры сечений и проверять прочность элементов конструкций.

Курс для продвинутых

В курс для продвинутых войдут соответственно те темы, которые изучаются студентами машиностроительных и строительных специальностей во втором семестре изучения сопромата. А именно:

Все статьи подбираются с учетом обращений студентов к поисковым системам. Перед написанием статьи я всегда анализирую частотность тех или иных ключевых запросов, и пишу статью только если вижу, что это будут читать, это будет полезно. Поэтому статей на узкие и специфичные темы на сайте не появится.

Источник

Многочисленные учебники «Cопромат для чайников» создают для развенчания мифа о непостижимой сложности дисциплины. Этой наукой пугают на первых курсах вузов. Для начала расшифруем грозный термин «сопротивление материалов».

На деле – проста и решение почти не выходит за рамки школьной задачи о растяжении и сжатии пружины. Другое дело – найти слабое звено конструкции и свести расчет к несложной постановке. Так что не стоит зевать на лекциях по основам механики. При подготовке к урокам можно пользоваться решениями онлайн, но на экзаменах помогут только свои знания.

Что такое сопромат

Это методика расчета деталей, конструкций на способность выдерживать нагрузки в требуемой степени. Или хотя бы для предсказания последствий. Не более, хотя почему-то относят руководство к наукам.

Что изучает наука сопротивление материалов

Этой «наукой» прекрасно владели древнегреческие и древнеримские инженеры, сооружавшие сложнейшие механизмы. Понятия не имея о структуре, уравнении состояния вещества и прочих теориях, египтяне строили исполинские плотины и пирамиды.

Основные задачи по сопротивлению материалов

Что изучает наука сопротивление материалов

Задача следует напрямую из определения. А вот каковы критерии упомянутого слова «выдерживать»? Неясно, что скрывается под «материалом» и как реальные вещи схематизировать.

Требования

Что изучает наука сопротивление материалов

Перечислены далеко не все, но для статики и базовой программы хватит:

Прочность – способность образца воспринимать внешние силы без разрушения. Слегка мнущаяся под весом оборудования подставка никого не интересует. Основную-то функцию она выполняет.

Жесткость – свойство воспринимать нагрузку без существенного нарушения геометрии. Гнущийся под силой резания инструмент даст дополнительную погрешность обработки. К ошибке приведет деформация станины агрегата.

Устойчивость – способность конструкции сохранять стабильность равновесия. Поясним на примере: стержень находится под грузом, будучи прямым – выдерживает, а чуть изогнется – характер напряжения изменится, груз рухнет.

Материал и силы

Что изучает наука сопротивление материалов

Как всякая методика, сопромат принимает массу упрощений и прямо неверных допущений:

материал однороден, среда сплошная. Внутренние особенности в расчет не берутся;

свойства не зависят от направления;

образец восстанавливает начальные параметры при снятии нагрузки;

поперечные сечения не меняются при деформации;

в удаленных от места нагрузки местах усилие распределяется равно по сечению;

результат воздействия нагрузок равен сумме последствий от каждой;

деформации не влияют на точки приложения сил;

отсутствуют изначальные внутренние напряжения.

Схемы

Служат для создания возможности расчета реальных конструкций:

тело – объект с практически одинаковыми «длина х ширина х высота»;

брус (балка, стержень, вал) – характеризуется значительной длиной.

На рисунке показаны опоры с воспринимаемыми реакциями (обозначены красным цветом):

Что изучает наука сопротивление материалов

Рис. 1. Опоры с воспринимаемыми реакциями:

в) жесткая заделка (защемление).

Силы в сопромате

Приложенные извне, уравновешиваются возникающими изнутри. Напомним, рассматривается статическая ситуация. Материал «сопротивляется».

Разделим нагруженное тело виртуальным сечением P (см. рис. 2).

Что изучает наука сопротивление материалов

Заменим хаос равнодействующей R и моментом M (см. рис. 3):

Что изучает наука сопротивление материалов

Распределив по осям, получим картину нагрузки сечения (см. рис. 4):

Что изучает наука сопротивление материалов

Нагрузки и деформации, изучаемые в сопромате

Изучим несколько принятых терминов.

Напряжения

В теле приложенные силы распределяются по сечению. Нагружен каждый элементарный «кусочек». Разложим силы:

Что изучает наука сопротивление материалов

Элементарные усилия таковы:

Что изучает наука сопротивление материалов

σ – «сигма», нормальное напряжение. Перпендикулярно сечению. Характерно для сжатия / растяжения;

τ – «тау», касательное напряжение. Параллельно сечению. Появляется при кручении;

p – полное напряжение.

Что изучает наука сопротивление материалов

Что изучает наука сопротивление материалов

Просуммировав элементы, получим:

Что изучает наука сопротивление материалов

N – нормальная сила;

A – площадь сечения.

В принятой в России системе СИ сила измеряется в ньютонах (Н). Напряжения – в паскалях (Па). Длины в метрах (м).

Деформации

Различают деформацию упругую (с индексом «e») и пластическую (с индексом «p»). Первая исчезает по снятии растягивающей / сжимающей силы, вторая – нет.

Полная деформация будет равна:

Что изучает наука сопротивление материалов

Что изучает наука сопротивление материалов

Деформация относительная обозначается «ε» и рассчитывается так:

Что изучает наука сопротивление материалов

Под «сдвигом» понимается смещение параллельных слоев. Рассмотрим рисунок:

Что изучает наука сопротивление материалов

Здесь γ – относительный сдвиг.

Что изучает наука сопротивление материалов

Виды нагрузки

Растяжение и сжатие – нагрузка нормальной силой (по оси стержня).

Кручение – действует момент. Обычно рассчитываются передающие усилия валы.

Изгиб – воздействие направлено на искривление.

Основные формулы

Базовый принцип сопромата единственный. В упомянутой задаче о пружине применим закон Гука:

Что изучает наука сопротивление материалов

E – модуль упругости (Юнга). Величина зависит от используемого материала. Для стали полагают равным 200 х 10 6 Па.

Сопротивление материала прямо пропорционально деформации:

Что изучает наука сопротивление материалов

Что изучает наука сопротивление материалов

Закон верен не всегда и не для всех материалов. Как уже упоминалось, принимается как одно из допущений.

Реальная диаграмма

Растяжение стержня из низкоуглеродистой стали выглядит следующим образом:

Что изучает наука сопротивление материалов

Что изучает наука сопротивление материалов

Что изучает наука сопротивление материалов

График (б) относится к большей части конструкционных материалов: подкаленные стали, сплавы цветных металлов, пластики.

Расчеты обычно ведут по σт (а) и σ0.2 (б). С незначительными пластическими деформациями конструкции или без таковых.

Пример решения задачи

Какой груз допустимо подвесить на пруток из стали 45 Ø10 мм?

σ0,2 для стали 45 равна 245 МПа (из ГОСТ).

Площадь сечения прутка:

Что изучает наука сопротивление материалов

Допустимая сила тяжести:

Что изучает наука сопротивление материалов

Для получения веса следует разделить на ускорение свободного падения g:

Что изучает наука сопротивление материалов

Ответ: необходимо подвесить груз массой 1950 кг.

Как найти опасное сечение

Наиболее простой способ – построение эпюры. На закрепленную балку действуют точечные и распределенные силы. Считаем на характерных участках, начиная с незакрепленного конца.

Усилие положительно, если направлено на растяжение.

Что изучает наука сопротивление материалов

Что изучает наука сопротивление материалов

На схеме показано, что:

Зачем и кому нужен сопромат

Даже не имеющий отношения к прочностным расчетам инженер-универсал должен иметь понятие о приблизительных (на 10-20%) значениях. Знать конструкционные материалы, представлять свойства. Чувствовать заранее слабые места агрегатов.

Совершенно необходим разработчикам различных конструкций, машиностроительных изделий. Будущим архитекторам в вузах преподается в виде предмета «Строительная механика».

Методика помогает на стадии проектирования обеспечивать необходимый запас прочности изделий. Стойкость к постоянным и динамичным нагрузкам. Это сберегает массу времени и затрат в дальнейших изготовлении, испытании и эксплуатации изделия. Обеспечивает надежность и долговечность.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *