Что изучает наука микробиология на какие разделы она подразделяется

Микробиология

Разделы микробиологии: бактериология, микология, вирусология и т. д. В зависимости от экологических особенностей микроорганизмов, условий их обитания, сложившихся отношений с окружающей средой, и в зависимости от практических потребностей человека наука о микробах в своем развитии дифференцировалась на такие специальные дисциплины как общая микробиология, медицинская, промышленная (или техническая), космическая, геологическая, сельскохозяйственная и ветеринарная микробиология.

Содержание

История науки

За несколько тысяч лет до возникновения микробиологии как науки человек не зная о существовании микроорганизмов, широко применял природные процессы, связанные с брожением, для приготовления кумыса и других кисломолочных продуктов, получения алкоголя, уксуса, при мочке льна.

Донаучный этап развития

Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо (1478—1553), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.

Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха. Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.

Описательный этап

Что изучает наука микробиология на какие разделы она подразделяется

Что изучает наука микробиология на какие разделы она подразделяется

Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем. В 1665 Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии. По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер (1601—1680), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука.

В своём письме Лондонскому Королевскому обществу он сообщает как 24 апреля 1676 года микроскопировал каплю воды и даёт описание увиденных там существ, в том числе бактерий. Левенгук считал обнаруженных им микроскопических существ «очень маленькими животными» и приписывал им те же особенности строения и поведения, что и обычным животным. Повсеместное распространение этих «животных» стало сенсацией не только в научном мире. Левенгук демонстрировал свои опыты всем желающим, в 1698 году его даже посетил Пётр I.

Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике. Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт, не имея никакого понятия о фотосинтезе, заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в 1766—1776 годах. Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.

В России одним из первых микробиологов был Л. С. Ценковский (1822—1887), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы.

Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович (1744—1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы — возможности оптики тогда ещё не позволяли это сделать. В 1827 итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер, Йёнс Якоб Берцелиус и Юстус Либих. Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» (1839) — саркастическую пародию на микробиологические исследования тех лет.

Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.

Споры о самозарождении и брожении

Средние века были временем господства идей Аристотеля, что означало также и признание его теорий зарождения двоякодышащих рыб из ила, насекомых из экскрементов или капель росы на листьях. Первые эксперименты, опровергающие представления Аристотеля поставил тосканский придворный медик Франческо Реди (1626—1697). Общий его принцип — наблюдение за питательным веществом в открытом, куда возможно попадание живых организмов, и в каким-либо образом закрытом от них, но не от воздуха, сосуде — использовался во всех подобных опытах. Тогда было опровергнуто самозарождение насекомых, но уже в XVIII веке католический священник Джон Турбервилл Нидхем выдвинул гипотезу «жизненной силы», существующей в живых телах и вызывающей при их распаде возникновение микроорганизмов. Против него выступил Ладзаро Спалланцани, показав что нагревание препятствует появлению живых существ в настое растительных и животных волокон, закрытом в сосуде. Тогда Нидхем возразил что воздух, в котором имеют потребность живые существа, теряет свою «жизненную силу» при нагревании.

Что изучает наука микробиология на какие разделы она подразделяется

Что изучает наука микробиология на какие разделы она подразделяется

Франц Шульц после стерилизации сосуда с настоем пускал туда воздух, пропущенный через карболовую кислоту, и не наблюдал развития там микроорганизмов. Чтобы избежать возражений, что кислота тоже лишает воздух жизненной силы, Шрёдер и фон Душ в 1854 году пропускали воздух через хлопковый фильтр, а в 1860 Гофман и независимо от него в 1861 Шевре и Пастер показали, что нет необходимости и в фильтре — достаточно изогнуть соединяющие сосуд с атмосферой трубки, чтобы в нём после стерилизации не «зарождалась» жизнь. Так принцип omne vivum ex vivo (всё живое из живого) окончательно победил в биологии. Используя представления о невозможности самозарождения жизни, Луи Пастер в 1860-х показал что стерилизация делает брожение невозможным, таким образом было доказано участие в нём микроорганизмов. Кроме того, это стало открытием новой формы жизни — анаэробной, не требующей кислорода, а иногда даже гибнущей под его воздействием.

Золотой век микробиологии

1880-е и 1890-е ознаменовались для микробиологии всплеском числа открытий. Во многом это было связано с подробной разработкой методологии. Прежде всего здесь следует отметить вклад Роберта Коха, создавшем в конце 1870-х — начале 1880-х ряд новых методов и общих принципов ведения исследовательской работы. Пастер использовал для выращивания микроорганизмов жидкие среды, содержащие все элементы, находимые в живых организмах. Жидкие среды, однако, были недостаточно удобны. Так, сложно было выделить колонию, происходящую от одной живой клетки («чистая культура»), в связи с чем можно было изучать только обогащённые самой природой культуры. Лишь в 1883 Э. Христианом Гансеном была получена первая чистая культура дрожжей, полученная методом висячей капли. Твёрдые среды впервые использовались для изучения грибов, где необходимость чистых культур также была обоснована. Для бактерий твёрдые среды применял Кон во Вроцлаве зимой 1868/69 годов, однако только в 1881 Роберт Кох положил начало широкому применению желатиновых и агаровых пластинок. В 1887 году введены в практику чашки Петри. Коху принадлежат также знаменитые постулаты:

Эти принципы были приняты не только в медицине, но и в экологии для определения вызывающих те или иные процессы организмов. Также Кох ввёл в применение методы окраски бактерий (ранее использованные в ботанике) и микрофотографию. Публикации Коха содержали в себе методики, принятые микробиологами всего мира. Вслед за ним началось развитие и обогащение методологии, так в 1884 Ганс Христиан Грам использовал метод дифференцирующего окрашивания бактерий (Метод Грама), С. Н. Виноградский в 1891 применил первую элективную среду. За следующие годы было описано больше видов чем за все предыдущее время, выделены возбудители опаснейших заболеваний, обнаружены новые процессы, производимые бактериями и неизвестные в других царствах природы.

Инфекционные заболевания

В изучении жизнедеятельности микроорганизмов следует отметить вклад Луи Пастера (1822—1895). Он же вместе с Робертом Кохом (1843—1910) стоят в истоках учения о микроорганизмах как возбудителях заболеваний.

Экология микроорганизмов

Экологическую роль и многообразие микробиологических процессов показали Бейеринк (1851—1931) и С. Н. Виноградский (1856—1953).

Открытие вирусов

Изучение обмена веществ микроорганизмов

Техническая, или промышленная, микробиология

Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.

Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников (1845—1916), Д. И. Ивановский (1863—1920), Н. Ф. Гамалея (1859—1949), Л. С. Ценковский, С. Н. Виноградский, В. Л. Омелянский, Д. К. Заболотный (1866—1929), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.

Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва, А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

Цель медицинской микробиологии — глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Связь с другими науками

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

Источник

Определение микробиологии как науки. Объекты изучения, разделы микробиологии. Задачи медицинской микробиологии

Определение микробиологии как науки. Объекты изучения, разделы микробиологии. Задачи медицинской микробиологии

Ответ:

Микробиология подразделяется на дисциплины:

1. Бактериологию – науку о бактериях;

2. Вирусологию – о вирусах;

3. Микологию – о грибах;

4. Протозоологию – о простейших;

5. Иммунологию – о защитных реакциях организма.

Разделы микробиологии:

1. Общая – изучает наиболее общие закономерности, свойственные каждой группе микроорганизмов. Она является базовой для всех разделов микробиологии.

2. Частная –изучает отдельных представителей микромира, в зависимости от проявления и влияния их на окружающую среду, живую природу, в том числе человека.

К частным разделам микробиологии относятся: медицинская, ветеринарная, сельскохозяйственная, техническая (раздел биотехнологии), морская, космическая.

Задачи медицинской микробиологии.

1. Установление этиологической (причинной) роли микроорганизмов в норме и патологии.

2. Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определения) возбудителей.

3. Бактериологический и вирусологический контроль окружающей среды

Начальный период развития микробиологии. Развитие микробиологии во второй половине 19 века и в 20 веке.

Ответ:

Эвристический период (до изобретения микроскопа).О природе заразных болезней высказывались различные предположения, что их возбудителями являются какие-то мельчайшие живые существа ― контагии. Врач Джироламо Фракасторо сформулировал положение, что зараза — это материальное начало.

Описательный (микрографический) период занял около двухсот лет.

Антони ван Левенгукизобрёл микроскоп, в 1675 г. впервые описал простейших, в 1683г. ― основные формы бактерий.

Физиологический период (с 1875 г.) ― эпоха Луи Пастера и Роберта Коха.

Открытия Л. Пастера:

· Промышленная микробиология (брожение).

· Разработка принципов асептики и методов стерилизации.

· Открытие возбудителей инфекционных заболеваний: сибирской язвы, родильной горячки, нагноений.

· Профилактика инфекционных заболеваний ― разработка вакцин против куриной холеры, сибирской язвы, бешенства.

· Методология изучения микроорганизмов ― триада Генле-Коха.

· Открытие возбудителей холеры, туберкулеза.

Иммунологический период.И.И.Мечников создал учение о невосприимчивости (иммунитете), разработал теорию фагоцитоза и обосновал клеточную теорию иммунитета..

Вирусологический период. 1892 г. Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус.

Современный (молекулярно-биологический) период (со 2-й половины XX в.).

· открытие новых форм жизни (инфекционных белков ― прионов и инфекционных РНК ― вироидов),

разработка методов культивирования клеток;

· разработка принципиально новых способов диагностики инфекционных и неинфекционных заболеваний (ИФА, РИА, иммуноблотинг, гибридизация НК, ПЦР);

· открытие новых возбудителей вирусных и бактериальных инфекций (ВИЧ, возбудители геморрагических лихорадок, легионелл и др.)

Техника безопасности в лаборатории. Мероприятия по окончании работы. Мероприятия при аварийной ситуации, журнал регистрации аварийных ситуаций.

Ответ:

1. В помещение лаборатории нельзя входить без специальной одежды – халата, шапочки, сменной обуви. Смена рабочей одежды должна проводиться по мере загрязне­ния, но не реже 1 раза в неделю. Перед сдачей в стирку защитная оде­жда должна быть обеззаражена.

2. Запрещается в помещении прием и хранение пищи, курение.

3. Нельзя использовать лабораторную спец. одежду за пределами лаборатории.

4. Зараженный материал подлежит уничтожению, инструменты и поверхность рабочего стола, дезинфицируют после окончания работ.

5. После работы с культурой, животными, перед уходом из лаборатории необходимо вымыть руки.

6. Штаммы микроорганизмов, заразный материал должны хранится в сейфе или холодильнике закрытыми и опечатанными.

7. Необходимо проводить обеззараживания предметов, одежды, стола, комнаты, в случае если разбился сосуд с инфицированным материалом или произошел неосторожный разлив заразного материала.

8. Сотрудники лаборатории подлежат обязательной вакцинации против тех инфекционных заболеваний, с возбудителями которых возможна работа в лаборатории.

9. В лаборатории должна быть инструкция по технике безопасности, которую персонал должен знать и строго выполнять. Необходимо обязательно немедленно сообщить руководителю лаборатории обо всех аварийных ситуациях, создающих угрозу биологической безопасности и проводить все мероприятия для предотвращения последствий.

Мероприятия по окончании работы.

По окончании работы все объекты, содержащие ПБА, должны быть убраны в холодильники, термостаты; в обязательном порядке проводится дезинфекция рабочих поверхно­стей столов.

Остатки ПБА, использованная посуда, твердые отходы из «заразной» зоны лаборатории должны собираться в закрывающиеся емкости и передаваться в автоклавную или дезинфицироваться на месте.

Перенос ПБА и использованной посуды для обеззаражи­вания должен осуществляться в закрывающихся емкостях с соответст­вующей маркировкой.

После завершения работы помещение «заразной» зоны лаборатории запирается и опечатывается.

Мероприятия при аварийной ситуации, журнал регистрации аварийных ситуаций.

На случай аварии, при которой создается реальная или потенци­альная возможность выделения патогенного биологического агента должен быть план ликвидации аварии, запас дезинфицирующих средств, активных в отношении возбудителей, с которыми проводят исследования.

В подразделении, проводящем работу с ПБА, в специально отве­денном месте хранят гидропульт (автомакс), комплекты рабочей (для переодевания пострадавших) и защитной (для сотрудников, ликвиди­рующих последствия аварии) одежды, аварийную аптечку.

Во всех подразделениях, работающих с ПБА, не реже одного раза в год проводят плановые тренировочные занятия по ликвидации аварий.

При проливе или разбрызгивании биоматериалов о происшествии необходимо поставить в известность зав. КДЛ, который определяет вид и объем дезинфекционных мероприятий. Все случаи аварий в КДЛ любого профиля подлежат обязательной регистрации во внутрилабораторном журнале по технике безопасности. Дальнейшие действия сотрудников зависят от типа ЧС.

Каждая аварийная ситуация должна быть в тот же день зарегистрирована в соответствующем журнале. Туда вносят сведения о пострадавших, обстоятельствах происшествия, принятых мерах устранения последствий аварии и профилактике.

7. Нормативные документы, регламентирующие работу микробиологической лабо­ратории. Правила работы с биологическим мик­роскопом

Основные документы:

• СанПиН 2.1.3.2630-10 «Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность»;

• СанПиН 2.1.7.2790-10 «Санитарно-эпидемиологические требования к обращению с медицинскими отходами»;

• СанПиН Безопасность работы с микроорганизмами III-IV групп патогенности (опасности) и возбудителями паразитарных болезней.

Кроме того, руководствуются различными приказами, стандартами, распоряжениями, МУК.

Правила работы с биологическим мик­роскопом

Микроскоп – точный оптический прибор, требующий бережного обращения. При работе с ним нельзя применять большие усилия.

Нельзя касаться пальцами поверхности линз, зеркал, светофильтров.

С поверхности линз удаляют пыль мягко беличьей кисточкой, промытой в эфире.

С зеркал сдувают пыль резиновой грушей. Протирать их нельзя.

Снаружи микроскоп протирают мягкой тряпкой, слегка пропитанной бескислотным вазелином, затем сухой чистой тряпкой.

Приготовление красителей. Подготовка препаратов для микроскопических исследований. Способы окрашивания мазков. Простой метод окраски.

Для окрашивания бактерий необходимо иметь ряд красящих растворов, желательно в особых склянках с пипетками, на которые надеты резиновые баллончики. Краску при помощи пипетки наливают на препарат так, чтобы весь мазок был покрыт ею. Краски разделяются на основные и кислые. Приготовление красящих растворов. Исходным материалом почти для всех необходимых рабочих красок являются насыщенные спиртовые растворы, их готовят следующим образом: 10 г сухой краски высыпают во флакон с притертой пробкой, наливают 100 мл 96° спирта (ректификата) и дают настояться в течение нескольких дней, каждый день взбалтывая раствор. Из таких насыщенных растворов готовят спирто-водные растворы, пригодные для окраски микробов. Существуют простые и сложные методы окраски. При простой окраске используют какой-либо один из красителей, например, фуксин водный (1-2 мин.), метиленовый синий (3-5 мин.). При окрашивании мазка препарат помещают на препаратодержатель (рельсы). На мазок наносят несколько капель красителя. После истечения времени окрашивания препарат промывают водой, высушивают на воздухе и микроскопируют.

12.Подготовка препаратов для микроскопических исследований. Сложные методы ок­раски бактерий. Методы изучения подвижности бактерий.

Обезжириваем предметно стекло. Наносим каплю стерильного ФР или в/п воды. Вносим культуру и слегка перемешиваем.При необходимости фиксируем.

Подвижность определяется в препарате «раздавленная капля», «висячая капля», помутнению в полужидком агаре.

Дыхание бактерий (аэробы, анаэробы, факультативные анаэробы, микроаэрофилы). Рост и размножение микроорганизмов, фазы размножения. Пигменты микроорганизмов. Светящиеся и ароматообразующие микроорганизмы

Анаэробные микроорганизмы (анаэробы) не используют для дыхания кислород, они живут и размножаются при отсутствии кислорода, получая энергию в результате процессов брожения. Анаэробами являются бактерии из рода клостридий (ботулиновая палочка и палочка перфрингенс), маслянокислые бактерии и др.

Факультативные анаэробы (могут потреблять глюкозу и размножаться как в аэробных, так и в анаэробных условиях);

Микроаэрофилы (нуждаются в уменьшенной концентрации свободного кислорода);

Термин «рост» означает увеличение массы клеток микроорганизмов в результате синтеза клеточного материала.

Под размножением микробов подразумевают способность их к самовоспроизведению, т. е. увеличению количества особей микробной популяции на единицу объема.

На кривой размножения различают четыре основные фазы роста культуры, сменяющие друг друга в определенной последовательности: начальная фаза (лаг-фаза), экспоненциальная, или логарифмическая (лог- фаза), стационарная фаза и фаза отмирания.

Сине-зеленый пигмент образует синегнойная палочка (Bact. pyocyaneum)—микроб, нередко обнаруживаемый на перевязочном материале, снятом с загрязненной раны. Желтые пигменты различных оттенков от золотисто-желтого до оранжевого продуцируют стафилококки, сарцины. Красный пигмент различных оттенков вырабатывают некоторые актиномицеты, дрожжи, бактерии. Растворимые и нерастворимые в воде. Светящиеся микроорганизмы, или фотобактерии, представляют своеобразную группу живых существ, окислительные процессы в организме которых сопровождаются явлением свечения. Размножаясь на рыбе мясе, фотобактерии вызывают свечение этих продуктов в темноте.
Некоторые виды микробов способны вырабатывать сложные эфиры с ароматным запахом. Ароматные запахи микробов часто напоминают запах фруктов — ананасов, яблок и т. д. Запахи некоторых микробов придают «благородный» аромат различным пищевым веществам — молоку, сливкам, сыру, винам.

16.Условия культивирования аэробных и анаэробных микроорганизмов. Способы вы­деления чистой культуры

Аэробные условия создаются в присутствии кислорода воздуха, в т.ч.на качалке. Анаэробные методы культивирования: физические (высокий столбик, под стеклом), химические (с добавлением поглотителей кислорода, замещение газом), биологические (при использовании культуры, поглощающей кислород). Для выделения чистой культуры используют метод Линднера, Дригальского. Рассевают, используя методы разобщения, посев секторами, разведения.

Изучение культуральных свойств микроорганизмов. Требования, предъявляемые к питательным средам.

Характеристика роста бактерий на плотных и жидких средах. При изучении колоний макроскопически (невооруженным глазом) различают ее величину, форму, цвет, прозрачность, характер поверхности. Питательные среды должны обязательно отвечать трем основным требованиям:

1. они должны содержать в достаточном количестве все необходимые питательные вещества (источники энергии, углерода, азота), соли и ростовые факторы;

2. должны иметь оптимальную для роста данного вида бактерий рН;

3. должны иметь достаточную влажность (при их усыхании повышается концентрация питательных веществ, особенно солей, до уровней, тормозящих рост бактерий).

Требования безопасности перед началом работы.

Проверить заземление. Проверить исправность токоведущих частей (розеток, вилок, проводов). Проверить наличие резинового коврика.

Загружать не плотно.

Требования безопасности во время работы

Без наличия заземления шкаф в электросеть не включать.

Загрузку шкафа производить при температуре не выше 40-50°С.

Загружать, выгружать шкаф или проводить какой-либо ремонт во время работы шкафа запрещается.

Запрещается помещать в сушильную камеру воспламеняющиеся и горючие материалы.

Во время сушки лабораторной посуды отверстия для воздуха должны быть открыты.

Выгрузку шкафа производить при температуре не выше 40-60°С.

30.Морфология и химический состав фагов. Специфичность фагов. Взаимодействие фага с клеткой.

Морфология фагов. Большинство фагов состоит из головки и хвостового отростка, поэтому их сравнивают с головастиками или сперматозоидами. Наиболее изучены Т-фаги кишечной палочки (рис. 21). Их отросток представляет собой полый цилиндр (стержень), покрытый чехлом и заканчивающийся базальной пластинкой с шипами и фибриллами. Размеры фагов, форма и величина головки, длина и строение отростка различны у разных фагов. Например, встречаются фаги с длинным отростком, чехол которого не сокращается, фаги с коротким отростком, без отростка и нитевидные (рис. 22).

Химический состав фагов. Как и все вирусы, фаги состоят из нуклеиновой кислоты одного типа (чаще встречаются ДНК-фаги) и белка. Молекула нуклеиновой кислоты, скрученная в спираль, находится в головке фага. Оболочка фага (капсид) и отросток имеют белковую природу. На свободном конце отростка содержится литический фермент, обычно лизоцим или гиалуронидаза.

отростка сокращается, и через канал стержня нуклеиновая кислота фага «впрыскивается» в клетку. Пустая белковая оболочка фага («тень») остается снаружи.

31. Понятие о вирулентных, умеренных фагах, профаге, лизогении.

В отличие от лизиса изнутри лизис извне происходит тогда, когда на клетке адсорбируется сразу очень большое количество фагов. Они проделывают в клеточной стенке многочисленные отверстия, через которые вытекает содержимое клетки. Таким образом при лизисе извне фаг не размножается, и количество его частиц не увеличивается.

По характеру действия на микроорганизмы различают вирулентные и умеренные фаги.

Лизогенные культуры по своим основным свойствам не отличаются от исходных, но они устойчивы к повторному заражению одноименным фагом. При действии на лизогенную культуру проникающего излучения (определенных доз и экспозиции рентгеновских, космических лучей), некоторых химических веществ и ряда других факторов продукция вирулентного фага и лизис им клеток культуры значительно увеличиваются.

Умеренные фаги могут принести вред микробиологическому производству. Например, если штаммы-продуценты вакцин, антибиотиков и других биологических веществ оказываются лизогенными, существует опасность перехода умеренного фага в вирулентный, что повлечет за собой лизис производственного штамма.

Умеренные фаги являются мощным фактором изменчивости микроорганизмов. Профаг может изменить некоторые свойства микробной культуры, например сделать ее способной к токсинообразованию, что наблюдается среди дифтерийных палочек, возбудителя скарлатины и др. Кроме того, переходя в вирулентную форму и лизируя клетку, фаг может захватить часть хромосомы клетки-хозяина и перенести эту часть хромосомы в другую клетку, где фаг снова перейдет в профаг, а клетка получит новые свойства.

32.Распространение фагов в природе. Применение фагов в медицине. Методы выделения и обнаружения бактериофага. Титрование бактериофага.

Распространение фагов в природе повсеместное. Фаги встречаются там, где находятся чувствительные к ним микроорганизмы: в воде, почве, сточных водах, выделениях человека и животных и т. д. Почти все известные бактерии являются хозяевами специфических для них фагов.

Устойчивость фагов к физическим и химическим факторам выше, чем у вегетативных форм их хозяев. Фаги выдерживают нагревание до 75° С, длительное высушивание, рН от 2,0 до 8,5. Они не чувствительны к антибиотикам, тимолу, хлороформу и ряду других веществ, уничтожающих сопутствующую микрофлору. Поэтому эти вещества используют при выделении и сохранении фагов. Кислоты и дезинфицирующие вещества губительны для фагов.

Материалом, из которого выделяют фаг, обычно являются фильтраты, полученные с помощью бактериальных фильтров из объектов внешней среды, органов и выделений человека и животных, культур микроорганизмов и т. д.

Перед фильтрацией исследуемый материал подготавливают следующим образом:

Жидкости (кровь, мочу, воду, смывы с предметов и т. п.) освобождают от крупных частиц с помощью бумажного фильтра или центрифугированием, чтобы они не забили поры бактериального фильтра.

Вязкий материал (гной, кал) эмульгируют в изотоническом растворе натрия хлорида или бульоне, после чего освобождают от крупных частиц, как описано выше.

О наличии фага в том или ином субстрате узнают по лизису чувствительной к нему микробной культуры (тест-культура).

Обнаружение фага на плотных средах. Тест-культуру засевают «газоном» (см. главу 7) на поверхность агара в чашке Петри. Посев подсушивают в термостате 30-40 мин при открытой крышке, после чего на него наносят каплю изучаемого материала. Через несколько минут, когда жидкость впитается, чашки помещают в термостат на 18-20 ч. Если в изучаемом материале есть фаг, произойдет лизис культуры и на месте, куда была нанесена капля, культура или совсем не вырастет (сплошной лизис) или образуются отдельные колонии фага.

Обнаружение фага в жидких средах. В две пробирки с одинаковым количеством бульона вносят по одной капле культуры, микроба, в отношении которого изучают фаг. В одну из них добавляют исследуемый фаг или фильтрат материала, в котором его определяют. Вторая пробирка служит контролем роста культуры. Пробирки помещают в термостат на 12-20 ч. Учет результатов производят только при наличии роста культуры в контроле (помутнение среды). Отсутствие видимого роста или последующее просветление среды в пробирке с исследуемым материалом свидетельствует о присутствии фага. Если содержимое этой пробирки мутное, исследование необходимо дополнить посевом на плотную среду: помутнение могло произойти от роста устойчивой к фагу культуры. Только в том случае, если в посеве на агар фаг не будет обнаружен, можно сделать вывод, что его нет в изучаемом материале.

Титрование фага по Грация (на плотной среде) методом агаровых слоев позволяет определить количество частиц фага в титруемом материале. Метод основан на том, что каждая частица фага дает зону просветления (лизиса) на чашке с газоном чувствительного к нему микроба, т. е. образует отдельную колонию.

Подсчитывать колонии лучше всего на чашках, где выросло не меньше 5 и не больше 50 колоний. В противном случае страдает точность подсчёта. Если на чашке много колоний, чашку можно разделить на несколько секторов, сосчитать колонии на одном из них и полученную цифру умножить на количество секторов.

Как правило, все биологические исследования проводят в трех параллельных опытах. В данном примере каждое разведение фага одновременно титруют трижды.

33.Понятие о генетике, изменчивости, наследственности бактерий. Бактериальная хромосома. Плазмиды.

Способность живых организмов сохранять определенные признаки на протяжении многих поколений называется наследственностью.

В процессе изучения наследственности оказалось, что каждое последующее поколение под влиянием различных факторов может приобретать признаки, отличающие их от предыдущих поколений. Это свойство называется изменчивостью. Таким образом наследственность и изменчивость тесно связаны между собой.

Еще в XIX веке Ч. Дарвин доказал, что все существующие виды живых организмов произошли путем изменчивости от немногих форм, а возникшие изменения, передаваемые по наследству, являются основой эволюционного процесса. Теория Дарвина получила высшую оценку у классиков марксизма- ленинизма. Ф. Энгельс рассматривал ее как одно из величайших открытий XIX века.

Изучение наследственности и изменчивости у высших организмов связано с большими трудностями из-за большой продолжительности их жизни и немногочисленности потомства.

Удобным объектом для этого изучения являются микроорганизмы, для которых характерен короткий жизненный цикл, быстрое размножение и способность давать многочисленное потомство. Кроме того, они обладают выраженной морфологией, которую можно изучать визуально при помощи светового микроскопа. Микроорганизмы биохимически активны, что легко учитывать при использовании специальных питательных сред.

Способность микроорганизмов изменять свои свойства при воздействии различных факторов (температура, ультрафиолетовое и рентгеновское излучение и др.) позволяет широко использовать их в качестве модели при изучении наследственности и изменчивости.

Первым объектом генетических исследований была кишечная палочка, которая хорошо культивируется в лабораторных условиях. Важное значение имело также то, что морфологические, культуральные и биохимические свойства этой бактерии хорошо изучены. В дальнейшем объектом генетических исследований стали и другие бактерии, а также вирусы.

Исследования генетики микроорганизмов показали, что у них роль носителя генетической информации играет ДНК (у некоторых вирусов РНК).

Молекула ДНК в бактериях состоит из двух нитей, каждая из которых спирально закручена относительно другой. При делении клетки нитчатая спираль удваивается- каждая из нитей служит как бы шаблоном или матрицей, на которой строится новая нить. При этом каждая нить, возникшая в процессе деления клеток, содержит вновь образовавшуюся двунитчатую молекулу ДНК.

Функциональной единицей наследственности является ген, который представляет собой участок нити ДНК. В генах записана вся информация, касающаяся свойств клетки.

Полный набор генов, которым обладает клетка, называется генотипом. Г ены подразделяются на структурные, несущие информацию о конкретных белках, вырабатываемых клеткой, и гены-регуляторы, регулирующие работу структурных генов. Например, клетка вырабатывает те белки, которые необходимы ей в данных условиях, однако при изменении условий гены- регуляторы изменяют свойства клетки, приспосабливая их к новым условиям.

Типичным признаком плазмид служит их способность к самостоятельному воспроизведению (репликации).

Они могут также переходить из одной клетки в другую и включать в себя новые гены из окружающей среды. К числу плазмид относятся:

Профаги, вызывающие у лизогенной клетки ряд изменений, передающихся по наследству, например способность образовывать токсин (см. трансдукцию).

F-фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации (см. конъюгацию).

R-фактор, придающий клетке устойчивость к лекарственным препаратам (впервые R-фактор был выделен из кишечной палочки, затем из шигелл). Исследования показали, что R-фактор может быть удален из клетки, что вообще характерно для плазмид.

R-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться причиной формирования трудно диагностируемых атипичных штаммов.

В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обработка бактерий УФ-лучами) количество

колицинпродуцирующих клеток увеличивается.

34. Фенотипическая изменчивость. Факторы, влияющие на изменчивость микроорганизмов. Трансформация, трансдукция, конъюгация.

Генетические рекомбинации. Трансформация. Клетки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными. Состояние компетентности часто совпадает с

логарифмической фазой роста.

С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как

Что изучает наука микробиология на какие разделы она подразделяется

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Что изучает наука микробиология на какие разделы она подразделяется

Что изучает наука микробиология на какие разделы она подразделяется

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Что изучает наука микробиология на какие разделы она подразделяется

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *