Что изучает наука логика в информатике 9 класс
Логика в информатике
Содержание
Область применения
Включаются следующие основные применения:
Этот список продолжает пополняться.
Эффективность логики в компьютерных науках
В отличие от естественных наук, компьютерные науки получили большой стимул от широкого и непрерывного взаимодействия с логикой. Особую роль в компьютерных науках играют доказательные методы разработки алгоритмов и программ с доказательствами их правильности.
Тестирование программ может выявить наличие ошибок в программах, но не может гарантировать их отсутствие. Гарантии отсутствия ошибок в алгоритмах и программах могут дать только доказательства их правильности. Алгоритм не содержит ошибок, если он дает правильные решения для всех допустимых данных.
Серьёзнейшей проблемой для компьютерных наук и информатики является наличие ошибок в алгоритмах и программах, публикуемых в учебниках и учебных пособиях, а также неумение преподавателей и учителей информатики выявлять и исправлять ошибки в алгоритмах и программах, составленных учащимися.
Единственный путь для преодоления этих проблем—это изучение систематических методов составления алгоритмов и программ с одновременным анализом их правильности в рамках доказательного программирования с самого начала обучения основам алгоритмизации и программирования.
Сложность для преподавателей и программистов заключается в том, что они должны уметь писать не только алгоритмы и программы, но и доказательства правильности своих алгоритмов и программ. Что сейчас не умеют делать ни математики, ни программисты.
В результате программисты пишут программы с большим числом ошибок, которые они не могут ни выявить, ни исправить. Массированное тестирование программ на ЭВМ приносит программистам несомненную пользу, однако не дает гарантий полного избавления от ошибок.
Практика применения и изучения доказательных методов программирования показала, что эта технология вполне доступна студентам математических факультетов, которым вполне по силам написание доказательств правильности алгоритмов, после проверки и тестирования программ на ЭВМ.
Наибольший эффект в освоении технологий доказательного программирования наблюдается в олимпиадах по информатике и программированию, где победителями и призёрами становятся те студенты, которые освоили технику тестирования программ на ЭВМ и составления алгоритмов и программ без ошибок.
Урок по информатике для 9 класса «Основы логики»
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Открытый урок по информатике в 9 классе
«Память становится мыслящей»
сформировать у учащихся понятие форм мышления;
сформировать понятия: логическое высказывание, логические величины, логические опера ции.
Способствовать развитию логического мышления
Способствовать развитию памяти, внимания.
Научить правильно рассуждать, уметь давать ответы на поставленные вопросы.
Способствовать развитию воспитанию аккуратности, терпению.
Способствовать культурному и интеллектуальному развитию учеников.
Тип урока: изучение нового материала.
Требования к знаниям и умениям:
Учащиеся должны знать:
— формы мышления, значение понятий: логическое высказывание, ло гические величины, логические операции.
Учащиеся должны уметь:
— приводить примеры логических высказываний;
— называть логические величины, логические операции.
Постановка целей урока.
Сообщение ученика об Аристотеле.
Определение содержания и объёма понятий в игровой форме.
Введение понятия кругов Эйлера-Венна.
Тренировочные упражнения по определению истинности или ложности высказываний.
Электронный тест для закрепления усвоенных знаний.
Подведение итогов урока, оценивание, рефлексия.
1. Постановка целей урока
1. Как человек мыслит?
Познание истины – одна из важнейших потребностей человека.
В Древней Греции, древней Индии, Древнем Риме законы и формы правильного мышления изучались в рамках ораторского искусства. Применение логических приемов рассуждения позволяло ораторам более убедительно доносить до аудитории
их точку зрения, склонять на свою сторону.
Мыслить логично – значит мыслить точно и последовательно,
не допускать противоречий в своих рассуждениях, уметь
вскрывать логические ошибки.
Сократ много размышлял и не боялся высказывать то,
Однажды он воскликнул: «Я знаю, что ничего не знаю!»
Законы развития есть у природы, общества, любой сложной системы и, конечно же, у самого мышления.
Существует даже мнение, что всякое движение нашей мысли, постигающей истину, добро и красоту, опирается на логические законы. Мы можем не осознавать их, но вынуждены всегда следовать этим законам, чтобы жить в обществе, общаться с людьми, понимать их и быть понятыми.
2. Сообщение ученика об Аристотеле. (презентация)
Логика – одна из древнейших наук.
В основе современной логики лежат учения, созданные еще древне греческими мыслителями, хотя первые учения о формах и способах мышления возникли в Древнем Китае и Индии. Основоположником формальной логики является величайший древнегреческий философ Аристотель ( IV в. до н.э.). Именно он впервые отделил ло гические формы мышления (речи) от его содержания, подробно разработал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления.
Логика (от греч. « logos », означающего слово, смысл, понятие, рассуждение, разум) –
наука о законах, формах и операциях правильного мышления.
Законы мира, сущность предметов, общее в них мы познаем посредством абст рактного мышления.
Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.
Основные формы абстрактного мышления:
Презентация по информатике на тему » Основы логики» (9 класс)
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
ОСНОВНЫЕ ПОНЯТИЯ АЛГЕБРЫ ЛОГИКИ. ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ЛОГИЧЕСКИЕ ОПЕРАЦИИ. LOGO
* В основе современной логики лежат учения, созданные еще древнегреческими мыслителями, хотя первые учения о формах и способах мышления возникли в Древнем Китае и Индии. Основоположником формальной логики является Аристотель, который впервые отделил логические формы мышления от его содержания. Согласно формальной логике основным элементом рассуждения человека является высказывание – утверждение, которое может быть либо истинным, либо ложным. Аристотель сформулировал ряд законов формальной логики. LOGO
Термин логика происходит от греческого «логос», что значит «рассуждение», «речь». Логика, как раздел математики – алгебра логики, возникла в XIX веке. Основателем этой науки был английский математик Джорж Буль. Джордж Буль впервые применил алгебраические методы для решения традиционных логических задач, которые до этого решались методами рассуждений, согласно формальной логике Аристотеля. Первоначально развитие математической логики носило исключительно теоретический характер. LOGO
* Какие из предложений являются высказываниями? Определите их истинность. Какой длины эта лента? Прослушайте информацию. Делайте утреннюю зарядку! Назовите устройства вывода информации. Кто сегодня отсутствует? Париж- столица Канады. Число 11 является составным. 4+5=9 Сложите числа 2 и 5. Некоторые медведи живут на севере. Все медведи белые. Чему равно расстояние от Москвы до Ленинграда. LOGO
* Основные понятия логики. Логические операции – логические действия. Базовые логические операции – конъюнкция, дизъюнкция, и отрицание. Дополнительные – импликация и эквивалентность. В алгебре логики высказывания обозначаются именами логических переменных (А, В, С), которые могут принимать значения истина (1) или ложь (о). Истина и ложь – логические константы. Логическое выражение – простое или сложное высказывание. Сложное высказывание строится из простых с помощью связок «И», «ИЛИ», «НЕ», которые в алгебре логики заменяются на логические операции. LOGO
Сложное высказывание состоит из простых связанных с помощью логических операций. Все выпускники школ сдают ЕГЭ по математике и русскому языку. + = Некоторые дети любят мороженое Некоторые дети любят пирожное или мороженое + = LOGO
Распределите высказывания по типам (простое, сложное) 1. Сегодня или завтра, или через месяц он напишет письмо. 2. В школе уроки начнутся в 9 утра. 3. Кончилось лето, и наступили прохладные дни. 4. У меня есть старший брат. 5. Круг – это не квадрат. Укажите связующие слова или союзы 1. Некоторые дети не любят конфеты. 2. Он позвонит или пришлет сообщение. 3. Мне должны подарить лыжи и самокат. LOGO
* Конъюнкция Дизъюнкция Инверсия Импликация Эквивалент-ность Название Обозначение Союз в естественном языке LOGO
Конъюнкция (логическое умножение) Это соединение двух простых логических выражений (высказываний) с помощью союза И. А – сегодня светит солнце, В – сегодня идет дождь А и В – сегодня светит солнце и идет дождь Вывод: результат будет истинным тогда и только тогда, когда оба исходных высказывания истинны, и ложным во всех остальных случаях. * А В А^В 0 0 0 0 1 0 1 0 0 1 1 1 LOGO
Дизъюнкция (логическое сложение) Это соединение двух простых логических высказываний с помощью союза ИЛИ. А или В – сегодня светит солнце или идет дождь Вывод: результат будет ложным тогда и только тогда, когда оба исходных высказывания ложны, и истинным в остальных случаях. * А В АvВ 0 0 0 0 1 1 1 0 1 1 1 1 LOGO
Инверсия (логическое отрицание) Это отрицание простого высказывания. Образуется с помощью частицы Не. (можно использовать словосочетание Неверно, что) * Вывод: если исходное выражение истинно, то результат его отрицания будет ложным, и наоборот, если исходное выражение ложно, то оно будет истинным. А А 0 1 1 0 LOGO
Эквивалентность (логическое равенство) Логическое выражение содержит конструкцию «А ТОГДА И ТОЛЬКО ТОГДА, КОГДА В» Вывод: результат будет истинным тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны. * А В А≡ В 0 0 1 0 1 0 1 0 0 1 1 1 LOGO
* Конъюнкция Дизъюнкция Инверсия Импликация Эквивалент-ность Название Логическое умножение Логическое сложение Отрицание Логическое следование Логическое равенство Обозначение А&В или А^В Аv В ¬ А или Ā А→В А(условие)В(следствие) А≡В или А↔В Союз в естественном языке А и В А или В Не А, Неверно, что А Если А, то В; когда А, тогда В; коль скоро А то В А тогда и только тогда, когда В LOGO
Последовательность выполнения операций Инверсия. Конъюнкция. Дизъюнкция. Импликация. Эквивалентность. Для изменения указанного порядка выполнения операций применяют скобки. LOGO
№ 1. Из двух простых высказываний постройте сложное высказывание, используя логические связки и установите истинность исходных высказываний и полученного высказывания: А : «Число 10 –четное» В : «Число 10 – отрицательное» * LOGO
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
Курс повышения квалификации
Авторская разработка онлайн-курса
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1006157
Не нашли то, что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Рособрнадзор разрешил провести ВПР по некоторым предметам на компьютерах
Время чтения: 0 минут
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Правительство направит регионам почти 92 миллиарда рублей на ремонт и оснащение школ
Время чтения: 1 минута
Во всех педвузах страны появятся технопарки
Время чтения: 1 минута
В Минпросвещения рассказали о формате обучения школьников после праздников
Время чтения: 1 минута
В Госдуме предложили продлить каникулы для школьников до 16 января
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Логика в информатике
Содержание
Логика в информатике
Логика в информатике как учебной дисциплине была введена в самых первых учебниках информатики Каймина в 1985 году и в учебник информатики Каймина для средних школ в 1987-89гг. Парадокс в том, что первых школьных учебниках информатики Ершова, Кушниренко и многих действующих учебниках информатики для школ и вузов логика отсутствует.
В 2004 году в России были введены Единые экзамены ЕГЭ по информатике, в содержании которых изучение и знание основ логики стало обязательным. Логика в информатике используется в поиске информации в Интернет, в базах данных, в базах знаний, в алгоритмах, алгоритмизации и во всех языках программирования.
Наибольшее значение логика приобретает в анализе алгоритмов и программ при решении задач на ЭВМ, когда от результатов решения задач зависят оценки на экзаменах или победа на олимпиадах по информатике или программированию.
Логика в программировании
Серьёзнейшей проблемой для информатики и компьютерных наук является наличие ошибок в алгоритмах и программах, публикуемых в учебниках и учебных пособиях, а также неумение преподавателями и учителями информатики выявлять и исправлять ошибки в алгоритмах и программах, составляемых учащимися.
Тестирование программ может выявить наличие ошибок в программах, но не может гарантировать их отсутствие. Гарантии отсутствия ошибок в алгоритмах и программах могут дать только доказательства их правильности. Алгоритм не содержит ошибок, если он дает правильные решения для всех допустимых данных.
Единственный путь для преодоления этих проблем является изучение систематическим методам составления алгоритмов и программ с одновременным анализом их правильности в рамках доказательного программирования с самого начала обучения основам алгоритмизации и программирования.
Сложность для преподавателей информатики и профессиональных программистов заключается в том, что они должны уметь писать не только алгоритмы и программы без ошибок, но и при этом писать доказательства правильности своих алгоритмов и программ. Что сейчас не умеют делать ни математики, ни программисты, ни преподаватели информатики.
В результате «профессиональные» программисты пишут программы с большим числом ошибок, которые они не могут ни выявить, ни исправить. Массированное тестирование программ на ЭВМ приносит программистам несомненную пользу, однако не дает гарантий полного избавления от ошибок.
Практика применения и доказательных методов программирования показала, что эта технология вполне доступна студентам математических факультетов, которым вполне по силам написание доказательств правильности алгоритмов, после проверки и тестирования программ на ЭВМ.
Наибольший эффект в освоении технологий доказательного программирования наблюдается на экзаманех по информатике в математических и экономических вузах, где студенты справляются и с решением задач на ЭВМ и написанием доказательств правильности алгоритмов и программ.
Интуитивные методы анализа правильности алгоритмов и программ характерны для олимпиад по информатике и программированию, где победителями и призёрами становятся те студенты, которые освоили технику тестирования программ на ЭВМ и составления алгоритмов и программ без ошибок.
Логика и искусственный интеллект
В информатике проблемы искусственного интеллекта рассматриваются с позиций проектирования экспертных систем и баз знаний. Под базами знаний понимается совокупность данных и правил вывода, допускающих логический вывод и осмысленную обработку информации.
В целом исследования проблем искусственного интеллекта в информатике направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы подготовки пользователей и разработчиков таких систем.
Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов.
Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог, используемый для создания баз знаний и моделей экспертных систем на ЭВМ.
Базы знаний на языке Пролог представляют наборы фактов и правил логического вывода, записанных языка логических предикатов с использованием лексики русского языка, хорошо понятно русским, казахам, украинцам — всем русскоязычным людям. Известны случаи написания программ и баз знаний с использованием русскоязычных интерпретаторов Пролога на казахском языке.
Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщенные сведения с помощью правил и процедур логического вывода и в том числе логических правил определения понятий, выражающих определенные знания как конкретные и обобщенные сведения.
В целом исследования проблем искусственного интеллекта в информатике в рамках логического подхода к проектированию баз знаний и экспертных систем направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем
Логика и логическое программирование
‘Логическое программирование’ — парадигма программирования, основанная на автоматическом доказательстве теорем, с использованием механизмов логического вывода информации на основе заданных фактов и правил вывода.Язык Пролог и логическое программирование и широко используются для создания баз знаний и экспертных систем и исследований в сфере искусственного интеллекта на основе логических моделей баз знаний и логических процедур вывода и принятия решений.
Язык и система логического программирования Пролог основаны на языке исчисления предикатов, представляющей собой подмножество логики первого порядка. Основными в языке Пролог являются понятия фактов и правил логического вывода, а также запросы на поиск и вывод информации в базах знаний.
Процедуры логического вывода и принятия решений, на основе которых система логического программирования Пролог делает логические выводы и дает осмысленные ответы. Факты в языке Пролог описываются логическими предикатами с конкретными значениями. Правила в Прологе записываются в форме правил логического вывода с логическими заключениями и списком логических условий.
Логика в базах данных
База данных — объективная форма представления и организации совокупности данных, систематизированных таким образом, чтобы эти данные могли быть найдены и обработаны с помощью ЭВМ. Базы данных применяются во всех сферах человеческой деятельности, сопряжённых с учётом и хранением информации.
Разделяют плоские базы данных, в которых вся информация располагается в единственной таблице, каждая запись в которой содержит идентификатор конкретного объекта и реляционные базы данных, состоящие из нескольких таблиц, связь между которыми устанавливается с помощью совпадающих значений одноимённых полей.
реляционная модель баз данных де-факто является стандартом. В реляционных базах данные хранятся в виде таблиц, состоящих из строк и столбцов. Каждая таблица имеет собственный, заранее определенный набор именованных полей. Столбцы таблиц реляционной базы могут содержать скалярные данные фиксированного типа, например числа, строки или даты.
Поиск информации в реляционных базах данных проводится с помощью языка запросов SQL (англ. Structured Query Language — язык структурированных запросов) — универсальный компьютерный язык, применяемый для создания, поиска и модификации информации в базах данных.
Язык запросов SQL к реляционным базам данных состоит из операторов определения, поиска и обработки информации в базах данных. Операторы поиска информации содержать логические условия поиска, которые могут быть простыми и сложно составными.
§ 1.3. Элементы алгебры логики
1.3.1. Высказывание
Алгебра в широком смысле этого слова — наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться над разнообразными математическими объектами. Многие математические объекты (целые и рациональные числа, многочлены, векторы, множества) вы изучаете в школьном курсе алгебры, где знакомитесь с такими разделами математики, как алгебра чисел, алгебра многочленов, алгебра множеств и т. д.
Для информатики важен раздел математики, называемый алгеброй логики; объектами алгебры логики являются высказывания.
Высказывание — это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное. |
Например, относительно предложений «Великий русский учёный М. В. Ломоносов родился в 1711 году» и «Two plus six Is eight» можно однозначно сказать, что они истинны. Предложение «Зимой воробьи впадают в спячку» ложно. Следовательно, эти предложения являются высказываниями.
В русском языке высказывания выражаются повествовательными предложениями. Но не всякое повествовательное предложение является высказыванием. |
Например, предложение «Это предложение является ложным» не является высказыванием, так как относительно него нельзя сказать, истинно оно или ложно, без того, чтобы не получить противоречие. Действительно, если принять, что предложение истинно, то это противоречит сказанному. Если же принять, что предложение ложно, то отсюда следует, что оно истинно.
Относительно предложения «Компьютерная графика — самая интересная тема в курсе школьной информатики» также нельзя однозначно сказать, истинно оно или ложно. Подумайте сами почему.
Побудительные и вопросительные предложения высказываниями не являются. |
Например, не являются высказываниями такие предложения, как: «Запишите домашнее задание», «Как пройти в библиотеку?», «Кто к нам пришёл? ».
Высказывания могут строиться с использованием знаков различных формальных языков — математики, физики, химии и т. п. |
Построим таблицу истинности для логического выражения A v А & В. В нём две переменные, две операции, причём сначала выполняется конъюнкция, а затем — дизъюнкция. Всего в таблице будет четыре столбца:
Наборы входных переменных — это целые числа от О до 3, представленные в двухразрядном двоичном коде: 00, 01, 10, 11. Заполненная таблица истинности имеет вид:
Обратите внимание, что последний столбец (результат) совпал со столбцом А. В таком случае говорят, что логическое выражение A v А & Б равносильно логическому выражению А.
1.3.4. Свойства логических операций
(A v B) v C = A v(B v C).
Законы алгебры логики могут быть доказаны с помощью таблиц истинности.
Докажем распределительный закон для логическического сложения:
A v (В & С) = (А V В) & (A v С).
Совпадение столбцов, соответствующих логическим выражениям в левой и правой частях равенства, доказывает справедливость распределительного закона для логического сложения.
Пример 2. Найдём значение логического выражения для числа Х = 0.
Исходя из того, что знает о внуках бабушка, следует искать в таблице строки, содержащие в каком-либо порядке три комбинации значений: 00, 11, 01 (или 10). Таких строк в таблице оказалось две (они отмечены галочками). Согласно второй из них, вазу разбили Коля и Вася, что противоречит условию. Согласно первой из найденных строк, вазу разбил Серёжа, он же оказался хитрецом. Шутником оказался Вася. Имя правдивого внука — Коля.
По окончании соревнований оказалось, что в каждом из предположений только одно из высказываний истинно, другое ложно. Какое место на соревнованиях заняла каждая из девушек, если все они оказались на разных местах?
Решение. Рассмотрим простые высказывания:
C1 = «Сима заняла первое место»;
В2 = «Валя заняла второе место»;
С2 = «Сима заняла второе место»;
Д3 = «Даша заняла третье место»;
А2 = «Алла заняла второе место»;
Д4 = «Даша заняла четвёртое место».
Логическое произведение истинных высказываний будет истинным:
На основании распределительного закона преобразуем левую часть этого выражения:
Высказывание С1 • С2 означает, что Сима заняла и первое, и второе места. Согласно условию задачи, это высказывание ложно. Ложным является и высказывание В2 • С2. Учитывая закон операций с константой 0, запишем:
Дальнейшее преобразование левой части этого равенства и исключение заведомо ложных высказываний дают:
Из последнего равенства следует, что С1 = 1, Д3 = 1, А2 = 1. Это означает, что Сима заняла первое место, Алла — второе, Даша — третье. Следовательно, Валя заняла четвёртое место.
Познакомиться с другими способами решения логических задач, а также принять участие в Интернет-олимпиадах и конкурсах по их решению вы сможете на сайте «Математика для школьников» (http://www.kenqyry.com/).
На сайте http://www.kaser.com/ вы сможете скачать демонстрационную версию очень полезной, развивающей логику и умение рассуждать логической головоломки Шерлок.
1.3.6. Логические элементы
Алгебра логики — раздел математики, играющий важную роль в конструировании автоматических устройств, разработке аппаратных и программных средств информационных и коммуникационных технологий.
Вы уже знаете, что любая информация может быть представлена в дискретной форме — в виде фиксированного набора отдельных значений. Устройства, которые обрабатывают такие значения (сигналы), называются дискретными. Дискретный преобразователь, который выдаёт после обработки двоичных сигналов значение одной из логических операций, называется логическим элементом.
На рис. 1.5 приведены условные обозначения (схемы) логических элементов, реализующих логическое умножение, логическое сложение и инверсию.
Рис 1.5.
Логические элементы
Логический элемент И (конъюнктор) реализует операцию логического умножения (рис. 1.5, а). Единица на выходе этого элемента появится только тогда, когда на всех входах будут единицы.
Логический элемент ИЛИ (дизъюнктор) реализует операцию логического сложения (рис. 1.5, б). Если хотя бы на одном входе будет единица, то на выходе элемента также будет единица.
Логический элемент НЕ (инвертор) реализует операцию отрицания (рис. 1.5, в). Если на входе элемента О, то на выходе 1 и наоборот.
Компьютерные устройства, производящие операции над двоичными числами, и ячейки, хранящие данные, представляют собой электронные схемы, состоящие из отдельных логических элементов. Более подробно эти вопросы будут раскрыты в курсе информатики 10-11 классов.
Пример 3. Проанализируем электронную схему, т. е. выясним, какой сигнал должен быть на выходе при каждом возможном наборе сигналов на входах.
Решение. Все возможные комбинации сигналов на входах А к В внесём в таблицу истинности. Проследим преобразование каждой пары сигналов при прохождении их через логические элементы и запишем полученный результат в таблицу. Заполненная таблица истинности полностью описывает рассматриваемую электронную схему.
Таблицу истинности можно построить и по логическому выражению, соответствующему электронной схеме. Последний логический элемент в рассматриваемой схеме — конъюнктор. В него поступают сигналы от входа Л и от инвертора. В свою очередь, в инвертор поступает сигнал от входа В. Таким образом,
Составить более полное представление о логических элементах и электронных схемах вам поможет работа с тренажёром «Логика» (http://kpolyakov. narod. ru/prog/logic. htm).
Самое главное
Высказывание — это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное.
Основные логические операции, определённые над высказываниями: инверсия, конъюнкция, дизъюнкция.
Таблицы истинности для основных логических операций:
При вычислении логических выражений сначала выполняются действия в скобках. Приоритет выполнения логических операций:
Вопросы и задания
На них изображены известные вам из курса физики параллельное и последовательное соединения переключателей. В первом случае, чтобы лампочка загорелась, должны быть включены оба переключателя. Во втором случае достаточно, чтобы был включён один из переключателей. Попытайтесь самостоятельно провести аналогию между элементами электрических схем и объектами и операциями алгебры логики:
По запросу сомики & гуппи было найдено 0 сайтов, по запросу сомики & меченосцы — 20 сайтов, а по запросу меченосцы & гуппи — 10 сайтов.
Сколько сайтов будет найдено по запросу сомики | меченосцы | гуппи?
Смит: «Я не делал этого. Браун сделал это».
Джон: «Браун не виновен. Смит сделал это».
Браун: «Я не делал этого. Джон не делал этого».