Что изучает наука геммология

Возможности современной геммологии

Татьяна Гвозденко, Екатерина Герасимова
«Природа» №4, 2018

Об авторах

Что изучает наука геммология

Татьяна Андреевна Гвозденко — геммолог-аналитик геммолого-минералогической лаборатории Государственного геологического музея им. В. И. Вернадского РАН (ГГМ РАН). Область научных интересов — минералогия, геммология.

Что изучает наука геммология

Екатерина Игоревна Герасимова — кандидат геолого-минералогических наук, заведующая геммолого-минералогической лабораторией этого музея. Круг научных интересов охватывает вопросы минералогии и геммологии.

Геммология — наука о самоцветах (ювелирных камнях) — начала формироваться в первой половине ХХ в. Безусловно, красивые, яркие и редкие минералы и раньше привлекали внимание людей, но к необходимости их детального (в том числе и аналитического) изучения исследователи пришли относительно недавно.

Большинство ученых придерживаются мнения, что геммологию необходимо рассматривать исключительно в качестве прикладного направления минералогии, а не как самостоятельную научную дисциплину. Предметом изучения геммологии служат ювелирные камни — минералы, ряд органогенных образований (янтарь, жемчуг, кораллы, кость и др.), а также синтетические (имеющие природные аналоги) и искусственные (не имеющие природных аналогов) соединения, выращенные в лабораторных условиях под полным контролем человека (рис. 1). Исследование ювелирных камней тесно связано с другими геологическими дисциплинами — минералогией, кристаллографией, геохимией, геологией месторождений полезных ископаемых, без знания, понимания и применения которых роль геммологии сводится к минимуму.

Что изучает наука геммология

Рис. 1. Ювелирные камни: 1 — аквамарин, 2 — аметист, 3 — танзанит, 4 — апатит, 5 — морганит, 6 — изумруд, 7 — синтетический желтый сапфир, 8 — аметист, 9 — сапфир, 10 — рубин, 11 — сфен, 12 — рубин, 13 — топаз, 14 — аметист. Фото Т. А. Гвозденко

История возникновения и развития

Человек всегда проявлял интерес к ярко окрашенным и особенно прозрачным камням. Еще наши далекие предки обращали внимание на красивые и редкие камушки, которые они находили и использовали в качестве украшений и амулетов. Первые описания свойств камней, дошедшие до нас, изложены в I в. Плинием Старшим в его самом известном труде «Естественная история» [1]. Другой значимой книгой о ювелирных камнях, написанной значительно позже, в 1652 г., считается Lapidary английского ученого Т. Николса [2].

Постепенно, с развитием науки (физики, химии и в особенности минералогии), открытием новых месторождений и выделением разновидностей ювелирных камней мировое сообщество осознало необходимость изучения самоцветов. Впервые термин «геммология» (от латинского gemma — ‘самоцвет, драгоценный камень’ и греческого λογοζ — ‘слово, разум’) стал употребляться на рубеже XIX и XX вв. Несколько лет спустя, в 1908 г., в рамках Национальной ассоциации ювелиров Великобритании был организован Образовательный комитет, позднее преобразованный в Геммологическую ассоциацию Великобритании (Gem-A). Впервые в мире началась подготовка специалистов по диагностике ювелирных камней — экспертов-геммологов. Следующим важным событием стало открытие в 1931 г. Геммологического института Америки (GIA) — одной из лидирующих научно-исследовательских организаций в области геммологии в мире. Инициатором его создания стал выпускник Gem-A Роберт Шипли.

В России у истоков исследования самоцветов стояли академик В. М. Севергин (1765–1826), писатель, краевед М. И. Пыляев (1842–1899), а также академик А. Е. Ферсман (1883–1945), внесшие огромный вклад в становление и развитие отечественной геммологии.

В начале XX в., параллельно с созданием исследовательских институтов, постепенно начала развиваться приборная база для изучения и диагностики самоцветов. Были изобретены рефрактометр для определения показателя преломления минералов (Г. Смит, 1905), эндоскоп для диагностики жемчуга (К. Чиловски и А. Перрин, 1920-е годы), полярископ для изучения оптических свойств камней, геммологический микроскоп для диагностики самоцветов и детального изучения включений (Р. Шипли и Р. Шипли мл., 1930-е годы), фильтр Челси для выявления имитаций драгоценных камней, а также был разработан метод определения удельного веса камней с применением тяжелых жидкостей (Б. Андерсон с коллегами, 1930-е годы) [3].

Что изучает наука геммология

Рис. 2. Минералы — природные пигменты: слева — лазурит 20×17×16 см; справа — малахит 19,5×18×5 см. Собрание ГГМ РАН

С древнейших времен человечество стремилось к преобразованию (облагораживанию) природных камней для улучшения их внешнего вида. Еще до нашей эры люди успешно владели способами усиления и изменения цвета — в буквальном смысле запекали камни в огне. Позже стали использовать натуральные красители (рис. 2), такие как охра, киноварь, лазурит, малахит, или подкладывать цветную фольгу под бесцветные либо слабоокрашенные камни. В собрании Алмазного фонда России представлено украшение «Большой букет» с цветными бриллиантами и изумрудами. В ажурную оправу бутона вставлен редкий нежно-фиолетовый бриллиант весом 15 карат — единственный цветной бриллиант в этом изделии. Под остальные, бесцветные, бриллианты мастер подложил разноцветную фольгу, чтобы они выглядели цветными (рис. 3).

Что изучает наука геммология Что изучает наука геммология

Рис. 3. «Большой букет» из собрания Алмазного фонда РФ. Фото: Гохран России

Сегодня, с развитием технологий, в зависимости от исходного материала (вида камня и его особенностей) успешно применяются разные методы облагораживания: облучение (электронами, нейтронами, γ-лучами), термообработка, термическая диффузия («имплантирование» оксидов титана, хрома и бериллия), заполнение трещин различными по составу веществами, поверхностная обработка (отбеливание, нанесение тонких пленок, вощение), прокрашивание и т. д. Существуют и весьма занятные способы облагораживания. Например, нагрев опалов в сахарном растворе с последующей обработкой серной кислотой. При этом базовый цвет камня темнеет, что подчеркивает его яркую опалесценцию на темном фоне. Такой способ облагораживания мы в шутку называем кисло-сладким. Цена самых дорогих опалов может доходить до нескольких тысяч долларов за карат.

В конце XIX в. — начале XX в. начали проводиться опыты по синтезу самоцветов (создание в лабораторных условиях под контролем человека ювелирных камней с химическими и физическими свойствами, схожими со свойствами их природных аналогов). Так, в 1902 г. французский химик О. Вернейль обнародовал успешные результаты синтеза корундов. Полученные им минералы впервые нашли широкое применение в промышленных масштабах. Метод основан на плавлении оксида алюминия с примесями оксидов металлов (хрома, титана, железа, никеля, ванадия) в огне кислородно-водородной горелки. До Вернейля опыты по синтезу ювелирных камней проводили: французские химики М. Годен (1837), Ж.-Ж. Эбельман (1851), Э. Фреми и Ш. Фейль (1877), П. Отфель и А. Перре (1888), шотландский химик Д. Хэнней (1880) и др. Хэнней, как считается, первым синтезировал алмаз [4].

Позднее ученые разработали (усовершенствовали) и другие способы синтеза: раствор-расплавный (флюсовый), метод Чохральского, заключающийся в «вытягивании» кристалла из расплава; гидротермальный; синтез при высоких давлении и температуре (НРНТ) и ряд других [5–7]. Сегодня в лабораториях по всему миру выращивают ювелирные камни отличного качества, зачастую даже превосходящие свои природные аналоги по яркости и насыщенности цвета, блеску, а также отсутствию дефектов. В мае 2015 г. российская компания New Diamond Technology заявила о выращенном методом HPHT алмазе в 32,26 карата, который впоследствии огранили в бриллиант весом 10 карат и сертифицировали в одной из авторитетных геммологических лабораторий.

Начиная с 50-х годов прошлого века ученые (в особенности, швейцарский профессор Э. Гюбелин — один из основоположников современной геммологии) стали активно заниматься исследованием происхождения драгоценных камней [8]. В течение более полувека накапливались данные (в основном о сапфирах, рубинах и изумрудах) из разных месторождений по всему миру.

Вопрос происхождения различных драгоценных камней — весьма сложный и нередко спорный. Часто полученных в ходе исследования данных бывает недостаточно для однозначного определения региона, из которого происходит данный минерал [9]. А эта информация весьма существенно влияет на стоимость драгоценного камня. Собранный фактический и аналитический материал позволяет нынешним специалистам геммологических лабораторий определять принадлежность драгоценного камня к конкретному месторождению с весьма высокой точностью.

Современный вид геммология начала приобретать во второй половине XX в. — с изобретением точных методов исследования минерального вещества (спектроскопии, тонких методов анализа химического состава), а также существенно усовершенствованной микроскопии.

Современный подход к решению проблем

За более чем столетнюю историю развития геммология претерпела значительные изменения, пройдя путь от простейшей диагностики камня с помощью лупы, рефрактометра и полярископа (традиционных геммологических методов) до использования сложных инструментальных исследований минерального вещества.

Среди основных задач, решаемых геммологией сегодня, следует отметить: определение минерального вида и разновидности ювелирного камня, определение его генезиса, выявление облагораживания, установление географической привязки с точностью до месторождения.

Последние три пункта можно считать основными задачами геммологии XXI в. Их успешное решение зависит не только от опыта геммолога, который должен иметь глубокие фундаментальные знания в области минералогии, но и от умения интерпретировать данные, полученные с помощью современного оборудования.

Сейчас в отечественных и зарубежных геммологических лабораториях используются высокотехнологические приборы, позволяющие решать самые сложные задачи. Среди современных методов исследования наибольшее распространение получили спектрометрические методы: оптическая и инфракрасная спектроскопия, спектроскопия комбинационного рассеивания (рамановская), а также тонкие методы определения химического состава: рентгенофлуоресцентный и масс-спектрометрический анализ с индуктивно связанной плазмой и с лазерной абляцией (LA-ICP-MS), электронно-зондовый микроанализ, а также энергодисперсионная рентгеновская флуоресценция. На сегодняшний день среди методов определения химического состава одним из самых высокоточных и оптимальных считается LA-ICP-MS, позволяющий определять содержание практически всех химических элементов с пределом обнаружения до миллионных (ppm) и даже миллиардных частей (ppb) [10]. В некоторых случаях применяются и другие инструментальные методы исследования — фотолюминесцентная спектроскопия, катодолюминесценция, электронный парамагнитный резонанс (ЭПР), лазерно-искровая эмиссионная спектрометрия (LIBS) и масс-спектрометрия вторичных ионов (SIMS) [10].

Как правило, для получения наиболее достоверных результатов используют несколько методов одновременно. Так, например, для определения происхождения (месторождения) сапфиров в комплексе используются микроскопия, оптическая спектроскопия, спектроскопия комбинационного рассеивания (идентификация включений в сапфире), а также масс-спектрометрия [11]. Анализ результатов таких исследований позволяет получить полную картину происхождения образца.

Стоит отметить, что вышеперечисленные методы были лишь адаптированы под геммологические задачи, а не разработаны специально для их решения. Использование разрушающих методов изучения в геммологии недопустимо, так как иногда стоимость исследуемых образцов превышает десятки и сотни тысяч долларов.

С появлением и развитием спектрометрии и методов определения тонкого химического состава вещества возможности геммологии значительно расширились. Использование современных аналитических методов позволяет решать ключевые задачи геммологии, в то время как традиционные методики оказываются бессильны.

Геммология как самостоятельное научное направление начала развиваться чуть более 100 лет назад, но за этот относительно небольшой промежуток времени мировое геммологическое сообщество прошло значительный путь. На сегодняшний день накоплена огромная фактическая и аналитическая базы по самоцветам. Они постоянно пополняются. Геммология совершенствуется и с появлением и развитием новых методов облагораживания и синтеза ювелирных камней, требующих разностороннего подхода в диагностике. В лабораторной практике известны случаи одновременного использования нескольких видов облагораживания не только природных, но и синтетических ювелирных камней (рис. 4). В основе многих методов синтеза лежит повторение природных процессов, в том числе использование природных затравок (флюсовой, гидротермальной и др.). Все это приводит к появлению дополнительных сложностей, справиться с которыми могут только высококвалифицированные специалисты.

Что изучает наука геммология

Рис. 4. Кольцо в виде бутона розы диаметром 2,2 см. В центре — природный бриллиант весом 0,70 карат. Огранка «сердце», лепестки украшены бесцветными природными бриллиантами (более 300) и желтыми синтетическими (около 150). Фото Е. И. Герасимовой

С началом применения высокотехнологических приборов геммология постепенно уходит от «субъективной» диагностики в «объективную», все более обоснованную и подкрепленную результатами точных инструментальных методов исследования вещества.

Геммология тесно взаимосвязана с коммерческой практикой. В условиях современного ювелирного рынка знание происхождения и выявление облагораживания ювелирных камней необходимы. Ошибка в их оценке может стоить тысяч, а порой и десятков тысяч долларов. Особенно это актуально для редких и крупных драгоценных камней с высокими характеристиками. Так, например, в мае 2015 г. на аукционе «Сотбис» было продано кольцо с бирманским рубином в 25,59 карата цвета «голубиная кровь» (самые дорогие рубины на ювелирном рынке) за рекордные 30 млн 300 тыс. долл. США. Природа происхождения камня и отсутствие признаков облагораживания подкреплялись сертификатами нескольких авторитетных геммологических лабораторий. На сегодняшний день этот камень — самый дорогой природный рубин, проданный с аукциона. В начале 2012 г. на одном из аукционов в Канаде на продажу выставили гигантский ограненный изумруд Teodora весом 57,5 тыс. карат с низкой стартовой ценой в 1 млн 150 тыс. долл. США. Как оказалось впоследствии, камень представлял собой прокрашенный берилл, а не изумруд. Таким образом, облагораживание существенно влияет на цену ювелирных камней, которая может отличаться на несколько порядков в зависимости от наличия облагораживания.

Что изучает наука геммология

Рис. 5. Пример ИК-спектра природного бриллианта типа IaA. Присутствие полос 1282 см −1 и 3107 см −1 подтверждает природное происхождение образца. Внизу — работа геммолога-аналитика с ИК-спектрометром. Фото С. В. Степановой

При формировании стоимости ювелирных камней особую роль играет страна происхождения или конкретное месторождение. В качестве примера можно привести турмалин параиба — это одна из самых востребованных сегодня на рынке разновидностей турмалина (рис. 6). Стоимость неоново-голубого минерала может отличаться в несколько раз. Решающий фактор — месторождение ювелирного камня (в Бразилии, Нигерии или Мозамбике), определить которое возможно при помощи оптической спектроскопии по содержанию меди в самоцвете [14].

Что изучает наука геммология

Рис. 6. Образцы бразильского турмалина параиба — одной из самых востребованных на рынке его разновидностей. Диаметр верхнего левого образца 7 мм. Фото Е. И. Герасимовой

Как мы видим, успешное развитие геммологии неразрывно связано с комплексным использованием традиционных и современных инструментальных методов исследования ювелирных камней, накоплением представительной аналитической базы, а также с одной из самых важных составляющих — грамотной интерпретацией получаемых данных высокопрофессиональными специалистами.

Литература
1. Плиний Старший. Естественная история. Книга XXXVII. Перевод с латинского и комментарии Г. А. Тароняна. М., 1994.
2. Nicholas T. A lapidary, or the history of precious gemstones. Cambridge, 1652.
3. Рид П. Геммология. М., 2003.
4. Hannay J. B. On the artificial formation of diamond // Proc. Roy. Soc. 1880; 30: 188–189. Preliminary note: 450–461.
5. Вильке К. Т. Выращивание кристаллов. Л., 1977.
6. Scheel H. J. Historical aspects of crystal growth technology // Journal of Crystal Growth. 2000; 211(1): 1–12.
7. Levin I. H. Synthesis of precious stones // The Journal of Industrial and Engineering Chemistry. 1913; 5(6): 496–500.
8. The Roots of Origin Determination // Jewellery News Asia. 2006; July: 66–71.
9. The Limitations of Origin Determination // Jewellery News Asia. 2006; August: 52–62.
10. Breeding C., Shen A. et al. Developments in gemstone analysis techniques and instrumentation during the 2000s // Gems&Gemology. 2010; 46(3): 241–257.
11. Krzemnicki M., Halicki P. Kashmir sapphires: Potential and limitations of origin determination by chemical fingerprinting with LA ICP mass spectrometry. GAHK Seminar. 23 June. 2012.
12. Cоболев Е. В., Лиcойван В. И. О пpиpоде cвойcтв алмазов пpомежуточного типа // Докл. АН CCCP. 1972; 204(1): 88–91.
13. Woods G. S., Collins A. T. Infrared absorption spectra of hydrogen complex in type I diamonds // J. of Physics and Chemistry of Solids. 1983; 44: 471–475.
14. Abduriyim A., Kitawaki H., Furuya M., Schwarz D. «Paraiba» — type copper-bearing tourmaline from Brazil, Nigeria and Mozambique: Chemical fingerprinting by LA-ICP-MS // Gems&Gemology. 2006; 42(1): 4–21.

Источник

Геммология – раздел минералогии

Эту тему я выбрала не только из-за того, что она для меня представляет большой интерес, а главным образом из-за того, что геммология относится к моей специальности – геохимии. Я пишу эту курсовую работу для того, чтобы приобрести начальные знания по этому предмету, и чтобы в дальнейшем мне было легче изучать геммологию глубже. Мне также интересно узнать о пользе, которую приносят драгоценные камни промышленности, потому что в такой профессии как геммолог, камни выращивают в лабораториях для использования их в новых технологиях и разработках.

В результате написания этой курсовой работы студент познакомится с историей развития геммологии, а также с таким драгоценным камнем, как александрит. Также в работе можно узнать о способах огранки камней, и каким образом можно улучшать их качество.

$1 Формулировка темы

Основными направлениями геммологии являются:

прикладное и технико-экономическое;

К.Худоба и Е.Гюбелин считают, что геммология (немецкий аналог – Edelsteinkunde) – это учение о свойствах поделочных и драгоценных камней, о законах, обуславливающих их формы и физические свойства, об их химическом составе и месторождениях с целью практического использования. Она рассматривает также имитации, синтетические аналоги природных камней и синтетические материалы, не имеющие природных аналогов. Практическая геммология занимается всеми видами обработки камней – огранкой, облагораживанием, окраской и т.п.

$2 Исторический очерк

Геммология зародилась, видимо, тогда, когда древний человек впервые попытался использовать камень не только для практических целей, но и для украшения. Первые упоминания о цветных камнях содержатся уже в египетских папирусах и клинописных текстах государств Двуречья. Начало интереса человека к драгоценным камням теряется во мгле времён, но драгоценные камни играли значительную роль в культуре уже в IV тысячелетии до нашей эры, около 6000 лет назад. Хотя наука о драгоценных камнях обычно считается детищем нашего столетия, по крайней мере, со времен Теофраста(372-287 гг. до н.э) минералоги в своих трактатах всерьёз обсуждали проблемы минералогии драгоценных камней. Ношение драгоценных камней в прошлом имело часто двойственную цель – личного украшения и, по крайней мере, в сознании того, кто их носил, личного охранения, как следствие широко распространенной веры в сверхъестественное могущество драгоценных камней. Такая сила приписывалась драгоценным камням на заре человечества, и человек так полностью и не потерял своей веры в предохраняющую силу талисмана, в том числе и от болезней, даже в столь искушенной стране, как Соединенные Штаты. Многие американцы до сих пор смотрят на опалы со страхом и благовением. С древнейших времен драгоценные камни ассоциируются с властью. В этой связи находятся применение некоторых видов жада в Китайской империи и особенно широко распространенная древняя практика использования резных камней (интальи и печати) для опечатывания документов и писем. Истоки искусства резьбы на цветных камнях теряются в глубине веков. Достаточно высоко глиптика была развита на Востоке и в Эгейском регионе уже в IV-III тысячелетиях до н.э. Вероятно, это одно из древнейших ремесел, известных человеку. Сначала на поверхности камней вырезали определенные знаки и фигуры, по-видимому, символы, усиливающие магические свойства камня-талисмана. Видимо, они и были первыми геммами. Гемма в переводе с латинского означает “драгоценный камень”. В древнем Риме геммами одно время называли только прозрачные резные камни. Геммы это также и непросвечивающие с выпуклыми (камея) или углубленным (инталья) художественным изображением. Позднее геммы стали использоваться как личные печати владельцев. Вырезали геммы на самых различных камнях: горном хрустале, аметисте, аквамарине, изумруде, гиацинте, гранате, лазурите, стеатите, гематите. Однако наиболее широко использовались разные разновидности халцедона (оникс, сардоникс, агат, сердолик) и яшмы (зелёная и красная).

В России первое геммологическое исследование было произведено М. В. Ломоносовым, который правильно объяснил природу янтаря. В начале XIX в. В. Севергин начал систематические геммологические исследования, Н. Щеглов их предложил, а в конце столетия М. И. Пыляев поместил в своей книге первый русский геммологический словарь.

Геммология призванная на ранних этапах своего развития обеспечивать ювелирный промысел, выделилась в самостоятельную научную дисциплину вначале века из другой геологической науки – минералогии. Условно началом развития геммологии можно считать 1902 год, когда французский химик М.А.Вернейль впервые получил и начал поставлять на мировой рынок синтетические рубины, а чуть позже синтетические сапфиры и синтетическую шпинель. Появление большого количества синтетических камней не снизило, а, наоборот, повысило значение и стоимость натуральных, природных ювелирных камней. По литературным данным, за последние двадцать лет стоимость ювелирных алмазов увеличилась почти в 4 раза, а цены на природные изумруды и рубины зачастую превосходят цены на алмазы. В последние годы геммология как самостоятельная наука развивается особенно интенсивно, поскольку на помощь геммологам пришли новые, современные методы исследования: рентгенография, адсорбционная оптическая спектроскопия, электронная микроскопия. Существуют несколько крупных геммологических центров, старейший из которых – Геммологическая ассоциация Великобритании была создана ещё в 1908 году. В 1978 г. при Всесоюзном минералогическом обществе АН СССР была создана Комиссия по камнесамоцветному сырью; геммологические исследования ведутся сейчас рядом научных центров.

$3 Цели и задачи геммологии

Основными задачами геммологии являются:

применение неразрушающих инструментальных методов исследования вещества к изучению драгоценных материалов;

изучение декоративных свойств и характерных особенностей цветных камней с целью использования их для изготовления украшений, декоративных предметов или произведений искусства.

совершенствование процессов облагораживания ювелирно-поделочного сырья;

Основными целями геммологии являются:

разработка критериев диагностики природных и синтетических самоцветов;

внедрение в ювелирное дело новых цветных камней и расширение возможностей использования уже известных минералов;

создание новых синтетических аналогов минералов и ювелирно – поделочных камней, а также совершенствование технологических схем синтеза уже существующих самоцветов;

$4 Объекты непосредственных наблюдений и предмет исследования

Предметом моих исследований являются камни, украшающие нашу жизнь, которые получили название самоцветы и цветные камни. Это разнообразные по составу минералы и горные породы, обладающие естественной декоративностью (красивой окраской или рисунком, прозрачностью, ярким блеском, световой игрой или другими, нередко сочетающимися свойствами) и, кроме того поддающиеся определенной механической обработке (резке, огранке, шлифованию, полированию).

Объектом непосредственного наблюдения в геммологии часто бывают лишь определенные разновидности минералов, которые отличаются каким-либо внешним признаком, чаще всего окраской, формой кристаллов, внешним видом и морфологическими признаками.

$5 Современные знания в геммологии

I. Классификация цветных камней.

В процессе развития геммологии было предложено множество классификаций ювелирных, поделочных и облицовочных камней, как в России, так и в других странах. Рассмотрим одну из них – классификацию цветных камней Е.Я.Киевленко, на которую ссылаются большинство российских геммологов и основой которой является критерий стоимости самоцвета. Согласно этой классификации, цветные камни делятся на 3 группы:

В свою очередь, эти группы делятся на порядки:

1-ый порядок: алмаз, изумруд, рубин, сапфир синий.

2-ой порядок: александрит, оранжевый, зелёный и фиолетовый сапфир, благородный черный опал, благородный жадеит.

3-ий порядок: демантоид, шпинель, благородный белый и огненный опал, аквамарин, топаз, родолит, турмалин.

4-ый порядок: хризолит, циркон, жёлтый, зелёный и розовый берилл, кунцит, бирюза, аметист, пироп, альмандин, лунный и солнечный камень, хризопраз, цитрин.

1-ый порядок: лазурит, жадеит, нефрит, малахит, чароит, янтарь, горный хрусталь (дымчатый и бесцветный).

2-ой порядок: агат, амазонит, гематит – кровавик, родонит, непрозрачные иризирующие полевые шпаты (беломорит и т.п.), “иризирующий” обсидиан, эпидот – гранатовые и везувиановые родингиты (жады).

яшма, мраморный оникс, обсидиан, гагат, окаменелое дерево, лиственит, рисунчатый кремень, графический пегматит, флюорит, авантюриновый кварцит, селенит, агальматолит, цветной мрамор и т.п.

В группу ювелирно – поделочных камней объединены твердые и самые красивые непрозрачные камни, лучшие из которых используются наряду с драгоценными камнями в ювелирных изделиях, а рядовое сырьё – в массовом ювелирно – галантерейном и сувенирно-камнерезном производстве. Кроме того, к этой группе относятся довольно распространённые прозрачные камни – янтарь и горный хрусталь (дымчатый и бесцветный), стоящие значительно ниже, чем камни IV порядка.

На стоимостную оценку александрита влияют следующие критерии: способность изменять свой цвет в зависимости от условий освещения, цвет камня, чистота, огранка и вес.

Способность изменять цвет называется «реверс». Оценивается в процентном соотношении (на сколько сильно изменяется цвет). Чем больше реверс, тем дороже камень.

II. Огранка драгоценных камней.

Яркие, сверкающие на солнце всеми оттенками цветовой гаммы самоцветы с глубокой древности привлекали внимание человека. И чтобы сделать их красивыми, мастера пытались различными способами очистить и отполировать грани камней. Тогда они сверкали в лучах солнца, как самые чистые самоцветы.

Глиптика была широко распространена в Античной Греции. Очень высокого уровня это искусство достигло во времена Древнего Рима. Но в средние века это искусство было забыто. Только в эпоху Возрождения художники Италии вновь обратились к резьбе по камню. В настоящее время глиптика очень популярна во всем мире. Центром камнерезного искусства в Европе считается г. Идар-Оберштейн в Германии, откуда поступает на рынок Западной Европы около 90% резных камней.

В древности, придавая форму камням, обычно лишь шлифовали и полировали природные грани. Таким образом, достигались блеск и сверкание камня. Отполированные камни нанизывали на нитку и носили на шее в виде ожерелья или кулона. В особо важных случаях, как, например, при изготовлении наперстника для Первосвященника, ювелир должен был подобрать камень, удовлетворяющий по цвету и размерам, определенным требованиям, и даже к нему оправу. Кстати, в отличие от наших дней оправу подбирали долго и очень тщательно.

Самый популярный способ придания формы камню называется “кабошон”, что означает “голова”. Еще в Древнем Риме считалось, что такие камни помогают людям, страдающим близорукостью. Связано, это с тем, что прозрачные камни в виде полного кабошона представляют собой вогнутую линзу. Император Нерон наблюдал бои гладиаторов через кабошон изумруда, о чем пишет в своих сочинениях Плиний Старший.

Кабошоны бывают трех типов с постепенным переходом от одного к другому. Первый тип: правильной формы выпуклый кабошон без граней. Обе поверхности камня, верхняя и нижняя, изогнуты, причем обе кривизны имеют одинаковый знак. При огранке лунных и звездчатых камней верхняя поверхность обычно более выпуклая, что способствует лучшему оптическому эффекту. Рубину или сапфиру глубоких розовых или голубых оттенков придают очертания, усиливающие свечение камня.

Опалы всегда делают более выпуклыми на открытой стороне. Хризоберилловый “кошачий глаз” обрабатывают с искривлением основания. Все это усиливает, цвет и сохраняет первичную массу камня.

Выпуклый кабошон при уплощении противоположной стороны переходит во второй тип простой кабошон (наподобие застывшей капли свиного сала). У него нижняя поверхность всегда плоская. Эта наиболее древняя форма обычно используется для кварцевого “кошачьего глаза”, а иногда и для красных гранатов.

При фасетной огранке весь камень покрывают плоскими гранями. Прежде эта форма определяла светский характер и подчеркивала магическую силу камня. Существует четыре разновидности фасетной огранки:

а) алмазной таблицей: в виде тонкой пластины с большой плоской гранью сверху;

г) огранка “лесенкой” близка по форме к усеченной пирамиде, но вершина и боковая грань выполняются в форме трапеции.

Долгое время считалось, что алмаз нельзя обработать из-за его чрезвычайно большой твердости. Поэтому вплоть до XX века алмазные октаэдры просто вставляли в оправы. Впервые шлифовать грани алмазов металлическими дисками с алмазными порошками начал в XIX веке Луи де Беркан из города Брюгге в Бельгии, хотя вполне возможно, что этот способ зародился еще в Индии. Первые гранильщики настолько увлекались своим могуществом над алмазами, что стали придавать камням фантастические формы. Однако при этом они не осознавали, каковы уникальные возможности самого камня.

Вплоть до второй половины XVI века камням в Европе придавали только правильные формы алмазного наконечника и алмазной таблицы. Обе эти формы основаны на использовании правильного октаэдра. Примитивные инструменты и отсутствие алмазной пилы, которая появилась только 100 лет назад, делали труд гранильщика тяжелым и долгим. Ведь стачивали 1/16 часть всей массы камня.

В середине XVI века на основе алмазной таблицы был получен после огранки фасетный камень с многоугольной площадкой. Четыре боковых ребра в верхней и нижней частях камня ошлифовываются таким образом, что на их местах возникают плоские фасеты. Эта так называемая простая, или ординарная, огранка вместе с двумя концевыми плоскостями насчитывает 16 фасет.

При дальнейшем наложении фасет на боковые ребра возникает “двойная” огранка с 34 фасетами и округлыми очертаниями в плане. Эта огранка розой, изобретение которой приписывают французскому кардиналу Мазарини, носит его имя. Жюль Мазарини сам увлекался обработкой алмазов и собрал великолепную коллекцию драгоценных камней, которую завещал французской короне. В настоящее время розой гранятся только мелкие алмазы.

Полная бриллиантовая огранка, которая была разработана в 1910 году, включает не менее 32 фасет в верхней части и не менее 24 фасет в нижней.

При одном и том же типе шлифовки камням могут быть приданы весьма разнообразные формы: сердце, герб, бочонок.

III. Облагораживание и улучшение качества ювелирных и поделочных камней.

Редкость – качество, присущее природному камнесамоцветному сырью. Человечество издавна стремилось получить самоцветы искусственным путём, а также улучшить качество природных самоцветных камней. Однако только в наше время стало возможно искусственно выращивать аналоги алмаза, рубина, сапфира, изумруда и других драгоценных минералов. Некоторые вещества, выращенные в технических целях, также с успехом стали использовать в ювелирном деле, например иттрий – алюминиевые и галлий – гадолиниевые гранаты.

Синтез минералов – интересная область минералогии. Каким образом улучшают качество самоцветного сырья? Под облагораживанием ювелирно – поделочного материала понимают искусственное улучшение его свойств с целью повышения ювелирных и художественно – декоративных качеств самоцветов. Чаще всего облагораживание связано с изменением окраски минерала. Люди занимались этим ещё в глубокой древности. При облагораживании использовали мёд, различные охры и сурик, медный купорос, примитивные кислоты. С развитием химии пропитка минералов различными химическими реагентами стала обычным делом. В наше время после открытия радиоактивности и рентгеновских лучей было обнаружено, что многие самоцветы обладают способностью изменять цвет при ионизирующем облучении. Сейчас в геммологии накоплен большой опыт облагораживания минерального камнесамоцветного сырья. В практических целях для изменения окраски минералов используют три типа воздействия:

Пропитывание химически активными веществами;

$6 Научные методы и средства исследований

Существует не мало научных методов исследования самоцветных камней. Наука не стоит на месте и предоставляет человечеству свои новые средства исследований камня. Среди современных методов исследования в геммологии в настоящее время применяются:

Рентгеноспектральный микроанализ (микрозонд), позволяющий проводить точный химический анализ в локальной области (точке) без разрушения вещества. Метод применяется при диагностики драгоценных камней, имитаций, определения составов сплавов металлов и особенностей химического состава веществ;

Рамановская спектроскопия (спектры комбинационного рассеяния) используется для определения вещества, а также определения состава включений, не выходящих на поверхность камня, без его повреждения;

Электронный Парамагнитный Резонанс (ЭПР – спектроскопия) позволяет определять природные камни с точностью до месторождения, а синтетические – с точностью до метода синтеза. Особенно успешно метод применяется для изумрудов. Данный метод также используется для изучения природы окраски минералов;

Оптическая спектроскопия (инфракрасная, видимая и ультрафиолетовая области) применяется для изучения состава драгоценных камней и их окраски;

Люминесцентная спектрофотомерия (с различными способами возбуждения люминесценции) служит для изучения природы окраски и позволяет отличать природную окраску драгоценных камней от искусственно наведенной;

Рентгеноструктурный анализ (монокристальный) позволяет определять структуру кристаллического вещества и распределение в структуре различных примесей;

Использование компьютерных и информационных технологий позволило создать конкурентоспособный на мировом рынке программный продукт для разметки крупного алмазного сырья, в том числе сложной формы, с дефектами и внутренними неоднородностями. В настоящее время ведется работа по созданию интерактивных учебных программ по экспертизе бриллиантов. Отдельное место занимает использование всемирной компьютерной сети INTERNET в геммологии и для анализа мирового рынка бриллиантов, цветных камней и ювелирных изделий. Нарастающий поток информации на электронных носителях, появление мировых компьютерных сетей по торговле бриллиантами и ювелирными изделиями, прогнозы на будущее компьютерного рынка драгоценных материалов уже сегодня требуют от специалиста умения работать с компьютерными сетями и ориентироваться на мировом электронном рынке.

$8 Место геммологии в учебных планах и тематике ГГФ НГУ и ОИГГМ СО РАН.

В практике кафедры широко применяются методы обучения студентов по индивидуальным планам. На кафедре ведена магистерская подготовка со следующими специализациями: «Геммология» (руководитель д.г.-м.н. В.С.Шацкий), «Петрология» (руководитель к.г.-м.н. В.В.Хлестов), «Экологическая геохимия» (руководитель д.г.-м.н. А.Б.Птицын), «Геология и методы поисков алмазных месторождений» (руководитель д.г.-м.н. Н.П.Похиленко). Спецкурс по геммологии: 78 часов лекций и 18 часов лабораторных занятий. Д.г.-м.н., профессор В.С.Шацкий. В спецкурсе геммологии проводят изучения по следующим предметам исследования:

методы идентификации, сортировки и оценки драгоценных камней и алмазов;

Геология месторождений драгоценных камней, способы добычи, обработки и облагораживания;

Особенности сбыта и терминологии;

Современные физико-химические методы диагностики, процедура геммологической экспертизы и особенности применения методов исследования кристаллического вещества в применении к драгоценным камням.

Также в ОИГГМ СО РАН существует геммологический центр, заведующим которого является профессор Владислав Станиславович Шацкий и сотрудником которого является Смирнов Сергей Захарович.

В ходе написания курсовой работы я столкнулась с нехваткой литературы и её устарением. Так как книги были написаны в Советское время и раньше, мне пришлось искать дополнительные статьи и литературу, которые были написаны не так давно. В результате написания работы я узнала об очень интересных вещах, связанных с драгоценными камнями. Я узнала о методах облагораживания камней, и о том какие виды огранки применяются к ним. Меня также заинтересовал такой драгоценный камень, как александрит, и его способности менять окраску при разном освещении. В общем, я довольна своей курсовой работой и тем как она сделана, потому что я имела возможность использовать современные источники и знания об этой науке.

По-моему негативным моментом было то, что весь материал приходилось брать из книг, а хотелось бы проводить исследования самой, что было бы намного увлекательней, но так как мои знания пока не достаточные в этой области, то приходилось довольствоваться книгами, написанные другими учеными и исследователями.

Список использованной литературы:

Андерсон Б. Определение драгоценных камней. М.: Мир, 1983. 456 с.

Декоративные разновидности цветного камня СССР. М.: Недра, 1989. 272 с.

Киевленко Е.Я., Сенкевич Н.Н., Гаврилов А.П. Геология месторождений драгоценных камней. М.: Недра, 1982. 280 с.

Корнилов Н.И., Солодова Ю.П. Ювелирные камни. М.: Недра, 1982. 240 с.

Куликов Б.Ф., Буканов В.В. Словарь камней самоцветов Л.: Недра, 1988

Платонов А.Н., Таран М.Н., Балицкий В.С. Природа окраски самоцветов. М.: Недра, 1984. 197 с.

Путолова Л.С. Самоцветы и цветные камни. М.: Недра, 1991.

Смит Г. Драгоценные камни. М.: Мир, 1984. 560 с.

Элуэлл Д. Искусственные драгоценные камни. М.: Мир, 1986. 160 с.

Ошибка в тексте? Выдели её мышкой и нажми Что изучает наука геммология

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *