Что изучает наука эволюция в биологии

Эволюционная биология

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Эволюционная биология — раздел биологии, изучающий происхождение видов от общих предков, наследственность и изменчивость их признаков, размножение и разнообразие форм в ходе эволюционного развития. Развитие отдельных видов обычно рассматривается в контексте глобальных преобразований флор и фаун, как компонентов биосферы. Эволюционная биология начала оформляться в качестве раздела биологии с широким признанием идей об изменчивости видов во второй половине XIX века.

Эволюционная биология — междисциплинарная область исследований, поскольку она включает в себя как полевые, так и лабораторные направления различных наук. Вклад в эволюционную биологию вносят исследования в таких узкоспециальных областях, как териология, орнитология или герпетология, которые обобщаются для получения ясной картины развития всего органического мира. Палеонтологи и геологи анализируют окаменелости, чтобы получить сведения о темпах и формах эволюции, а популяционная генетика исследует эти же вопросы теоретически. Экспериментаторы используют селекцию дрозофил для лучшего понимания многих проблем эволюционной биологии, например эволюции старения. В 1990-ых годах биология развития вернулась в эволюционную биологию после длительного забвения в виде новой синтетической дисциплины — эволюционной биологии развития.

Содержание

История

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Из названия книги Джулиана Хаксли «Evolution: The Modern synthesis» [7] в научную литературу проник термин «современный синтез», обозначивший новый подход к эволюционным процессам. Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Джорджем Симпсоном в 1949 году. Эта теория стала основой для развития эволюционной биологии во второй половине XX века. Подавляющее число новых идей в этой области рождалось из дискуссий вокруг синтетической теории, причем как из её защиты, так и из критики.

Методы эволюционной биологии

Эволюционная биология широко использует методы смежных наук. Опыт, накопленный палеонтологией, морфологией, генетикой, биогеографией, систематикой и другими дисциплинами, стал той базой, которая позволила превратить метафизические идеи о развитии живых существ в научный факт. Далее приводится описание различных методов приблизительно в той последовательности, в которой они входили в исследования по эволюции.

Палеонтологические методы

Биогеографические методы

Морфологические методы

Морфологические (сравнительно-анатомические, гистологические и др.) методы позволяют на основе сравнения сходств и различий в строении организмов судить о степени их родства. Методы сравнительной анатомии, наряду с палеонтологическими, были одними из первых, позволивших поставить эволюционные представления на рельсы биологической науки.

Молекулярно-генетические методы

Макромолекулярные данные, под которыми имеется в виду последовательности генетического материала и белков, накапливаются всё быстрыми темпами благодаря успехам молекулярной биологии. Для эволюционной биологии быстрое накопление данных последовательностей целых геномов имеет значительную ценность, потому что сама природа ДНК позволяет использовать его как «документ» эволюционной истории. Сравнения последовательности ДНК разных генов у разных организмов могут сказать ученому много нового об эволюционных взаимоотношениях организмов, которые не могут иначе быть обнаружены на основе на морфологии, или внешней форме организмов, и их внутренней структуре. Поскольку геномы эволюционируют через постепенное накопление мутаций, количество отличий последовательности нуклеотидов между парой геномов разных организмов должно указать, как давно эти два генома разделили общего предка. Два генома, которые разделились в недавнем прошлом, должны иметь меньшие отличий, чем два генома, чей общий предок очень давний. Потому, сравнивая разные геномы друг с другом, возможно получить сведения об эволюционном взаимоотношения между ними. Это является главной задачей молекулярной филогенетики.

Теоретическая эволюционная биология

В современной эволюционной биологии сосуществует несколько теорий, описывающих эволюционные процессы. Такое сосуществование, хотя и не всегда мирное, объясняется тем, что каждая из теорий уделяет основное внимание ограниченной группе факторов. Так синтетическая теория делает упор на популяционно-генетические процессы, а эпигенетическая — на онтогенетическое развитие. Проблемы, связанные с эволюцией биоценозов как целого, освещает экосистемная теория эволюции, находящаяся в начальной стадии разработки. В то же время теория прерывистого равновесия дает представление о сменах режимов эволюционного процесса, хотя мало что может сказать об их причинах.

Синтетическая теория эволюции

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Р. Фишера (1918—1930), Дж. Б. С. Холдейна-младшего (1924), С. Райта (1931; 1932), учение Дарвина приобрело прочный генетический фундамент.

Статья С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского и Ф. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации — новые варианты генов.

Нейтральная теория молекулярной эволюции

В конце 1960-х годов Мотоо Кимурой была разработана теория нейтральной эволюции, предполагающая, что в эволюции важную роль играют случайные мутации, не имеющие приспособительного значения. В частности, в небольших популяциях естественный отбор, как правило, не играет решающей роли. Теория нейтральной эволюции хорошо согласуется с фактом постоянной скорости закрепления мутаций на молекулярном уровне, что позволяет, к примеру, оценивать время расхождения видов.

Теория нейтральной эволюции не оспаривает решающей роли естественного отбора в развитии жизни на Земле. Дискуссия ведётся касательно доли мутаций, имеющих приспособительное значение. Большинство биологов признают ряд результатов теории нейтральной эволюции, хотя и не разделяют некоторые сильные утверждения, первоначально высказанные Кимурой. Теория нейтральной эволюции объясняет процессы молекулярной эволюции живых организмов на уровнях не выше организменных. Но для объяснения прогрессивной эволюции она не подходит по математическим соображениям. Исходя из статистики для эволюции, мутации могут как возникать случайно, вызывая приспособления, так и те изменения, которые возникают постепенно. Теория нейтральной эволюции не противоречит теории естественного отбора, она лишь объясняет механизмы проходящие на клеточном, надклеточном и органном уровнях.

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Теория прерывистого равновесия

В 1972 году палеонтологами Нильсом Элдриджем и Стивеном Гулдом была предложена теория прерывистого равновесия, утверждающая, что эволюция существ, размножающихся половым путём, происходит скачками, перемежающимися с длительными периодами, в которых не происходит существенных изменений. Согласно этой теории, фенотипическая эволюция, эволюция свойств, закодированных в геноме, происходит в результате редких периодов образования новых видов (кладогенез), которые протекают относительно быстро по сравнению с периодами устойчивого существования видов. Теория стала своеобразным возрождением сальтационной концепции. Принято противопоставлять теорию прерывистого равновесия теории филетического градуализма, которая утверждает, что бо́льшая часть процессов эволюции протекает равномерно, в результате постепенной трансформации видов.

Эволюционная биология развития

В последние десятилетия эволюционная теория получила импульс от исследований в области биологии развития. Открытие hox-генов и более полное понимание генетического регулирования эмбриогенеза стало основой для глубокого продвижения в теории морфологической эволюции, связи индивидуального и филогенетического развития, эволюции новых форм на основе прежнего набора структурных генов.

Экспериментальная эволюционная биология

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Опыты Шапошникова

В конце 1950-х — начале 1960-х годов советским биологом Георгием Шапошниковым была проведена серия экспериментов, в процессе которых проводилась смена кормовых растений у различных видов тлей. Во время опытов впервые наблюдалась репродуктивная изоляция использованных в эксперименте особей от исходной популяции, что свидетельствует об образовании нового вида.

Эксперимент по эволюции E. coli

Уникальный эксперимент по эволюции бактерии E. coli в искусственных условиях, проведённый группой под руководством Ричарда Ленски в университете штата Мичиган. В процессе эксперимента прослежены генетические изменения, происходившие в 12 популяциях E. coli на протяжении 50 000 поколений. Эксперимент начался 24 февраля 1988 года и продолжается более 20 лет [9] [10]

Источник

Эволюция живой природы. Эволюционная теория. Движущие силы эволюции.

Эволюция живых систем

Эволюционное учение

Эволюционное учение (теория эволюции) — наука, изучающая историческое развитие жизни: причины, закономерности и механизмы. Различают микро- и макроэволюцию.

Микроэволюция — эволюционные процессы на уровне популяций, приводящие к образованию новых видов.

Макроэволюция — эволюция надвидовых таксонов, в результате которой формируются более крупные систематические группы. В их основе лежат одинаковые принципы и механизмы.

Развитие эволюционных идей

Учение Дарвина сводится к следующему:

Факторы эволюции по Ч. Дарвину — это

Наследственность — способность организмов передавать из поколения в поколение свои признаки (особенности строения, развития, функции).
Изменчивость — способность организмов приобретать новые признаки.
Борьба за существование — весь комплекс взаимоотношений организмов с условиями окружающей среды: с неживой природой (абиотическими факторами) и с другими организмами (биотическими факторами). Борьба за существование не является «борьбой» в прямом смысле слова, фактически это стратегия выживания и способ существования организма. Различают внутривидовую борьбу, межвидовую борьбу и борьбу с неблагоприятными факторами окружающей среды. Внутривидовая борьба — борьба между особями одной популяции. Всегда идёт очень напряжённо, так как особи одного вида нуждаются в одних и тех же ресурсах. Межвидовая борьба — борьба между особями популяций разных видов. Идёт, когда виды конкурируют за одни и те же ресурсы либо когда они связаны отношениями типа «хищник – жертва». Борьба с неблагоприятными абиотическими факторами среды особенно проявляется при ухудшении условий среды; усиливает внутривидовую борьбу. В борьбе за существование выявляются наиболее приспособленные к данным условиям обитания особи. Борьба за существование ведёт к естественному отбору.
Естественный отбор — процесс, в результате которого выживают и оставляют после себя потомство преимущественно особи с полезными в данных условиях наследственными изменениями.

На основе дарвинизма перестроились все биологические и многие другие естественные науки.
В настоящее время наиболее общепризнанной является синтетическая теория эволюции (СТЭ). Сравнительная характеристика основных положений эволюционного учения Ч. Дарвина и СТЭ дана в таблице.

Сравнительная характеристика основных положений эволюционного учения Ч. Дарвина и синтетической теории эволюции (СТЭ)

ПризнакиЭволюционная теория Ч. ДарвинаСинтетическая теория эволюции (СТЭ)
Основные результаты эволюции1) Повышение приспособленности организмов к условиям среды; 2) повышение уровня организации живых существ; 3) увеличение многообразия организмов
Единица эволюцииВидПопуляция
Факторы эволюцииНаследственность, изменчивость, борьба за существование, естественный отборМутационная и комбинативная изменчивость, популяционные волны и дрейф генов, изоляция, естественный отбор
Движущий факторЕстественный отбор
Трактовка термина естественный отборВыживание более приспособленных и гибель менее приспособленных формИзбирательное воспроизводство генотипов
Формы естественного отбораДвижущий (и половой как его разновидность)Движущий, стабилизирующий, дизруптивный

Возникновение приспособлений. Каждое приспособление вырабатывается на основе наследственной изменчивости в процессе борьбы за существование и отбора в ряду поколений. Естественный отбор поддерживает только целесообразные приспособления, которые помогают организму выживать и оставлять потомство.
Приспособленность организмов к среде не абсолютна, а относительна, так как условия среды обитания могут изменяться. Доказательством этого служат многие факты. Например, рыбы прекрасно приспособлены к водной среде обитания, но все эти адаптации совершенно непригодны для других сред обитания. Ночные бабочки собирают нектар со светлых цветков, хорошо заметных ночью, но часто летят на огонь и гибнут.

Элементарные факторы эволюции — факторы, изменяющие частоту аллелей и генотипов в популяции (генетическую структуру популяции).

Выделяют несколько основных элементарных факторов эволюции:
• мутационный процесс;
• популяционные волны и дрейф генов;
• изоляция;
• естественный отбор.

Мутационная и комбинативная изменчивость.

Мутационный процесс приводит к возникновению новых аллелей (или генов) и их сочетаний в результате мутаций. В результате мутации возможен переход гена из одного аллельного состояния в другое (А→а) или изменение гена вообще (А→С). Мутационный процесс, в силу случайности мутаций, не обладает направленностью и без участия других факторов эволюции не может направлять изменение природной популяции. Он лишь поставляет элементарный эволюционный материал для естественного отбора. Рецессивные мутации в гетерозиготном состоянии составляют скрытый резерв изменчивости, который может быть использован естественным отбором при изменении условий существования.
Комбинативная изменчивость возникает в результате образования у потомков новых комбинаций уже существующих генов, унаследованных от родителей. Источниками комбинативной изменчивости являются перекрёст хромосом (рекомбинация), случайное расхождение гомологичных хромосом в мейозе, случайное сочетание гамет при оплодотворении.

Популяционные волны и дрейф генов.

Популяционные волны (волны жизни) — периодические и непериодические колебания численности популяции как в сторону увеличения, так и в сторону уменьшения. Причинами популяционных волн могут быть периодические изменения экологических факторов среды (сезонные колебания температуры, влажности и т. д.), непериодические изменения (природные катастрофы), заселение видом новых территорий (сопровождается резкой вспышкой численности).
В качестве эволюционного фактора популяционные волны выступают в малочисленных популяциях, где возможно проявление дрейфа генов. Дрейф генов — случайное ненаправленное изменение частот аллелей и генотипов в популяциях. В малых популяциях действие случайных процессов приводит к заметным последствиям. Если популяция мала по численности, то в результате случайных событий некоторые особи независимо от своей генетической конституции могут оставить или не оставить потомство, вследствие этого частоты некоторых аллелей могут резко меняться за одно или несколько поколений. Так, при резком сокращении численности популяции (например, вследствие сезонных колебаний, сокращения кормовых ресурсов, пожара и т. д.) среди оставшихся в живых немногочисленных особей могут быть редкие генотипы. Если в дальнейшем численность восстановится за счёт этих особей, то это приведёт к случайному изменению частот аллелей в генофонде популяции. Таким образом, популяционные волны являются поставщиком эволюционного материала.
Изоляция обусловлена возникновением разнообразных факторов, препятствующих свободному скрещиванию. Между образовавшимися популяциями прекращается обмен генетической информацией, в результате чего начальные различия генофондов этих популяций увеличиваются и закрепляются. Изолированные популяции могут подвергаться различным эволюционным изменениям, постепенно превращаться в разные виды.
Различают пространственную и биологическую изоляцию. Пространственная (географическая) изоляция связана с географическими препятствиями (водные преграды, горы, пустыни и др.), а для малоподвижных популяций и просто с большими расстояниями. Биологическая изоляция обусловлена невозможностью спаривания и оплодотворения (в связи с изменением сроков размножения, строения или других факторов, препятствующих скрещиванию), гибелью зигот (вследствие биохимических различий гамет), стерильностью потомства (в результате нарушения конъюгации хромосом при гаметогенезе).
Эволюционное значение изоляции состоит в том, что она закрепляет и усиливает генетические различия между популяциями.
Естественный отбор. Изменения частот генов и генотипов, вызванные рассмотренными выше факторами эволюции, носят случайный, ненаправленный характер. Направляющим фактором эволюции является естественный отбор.

Естественный отбор — процесс, в результате которого выживают и оставляют после себя потомство преимущественно особи с полезными для популяции свойствами.

Отбор действует в популяциях, его объектами являются фенотипы отдельных особей. Однако отбор по фенотипам является отбором генотипов, так как потомкам передаются не признаки, а гены. В результате в популяции происходит увеличение относительного числа особей, обладающих определённым свойством или качеством. Таким образом, естественный отбор — это процесс дифференциального (выборочного) воспроизводства генотипов.
Действию отбора подвергаются не только свойства, повышающие вероятность оставления потомства, но и признаки, которые не имеют прямого отношения к воспроизводству. В ряде случаев отбор может быть направлен на создание взаимоприспособлений видов друг к другу (цветки растений и посещающие их насекомые). Также могут создаваться признаки, вредные для отдельной особи, но обеспечивающие выживание вида в целом (ужалившая пчела гибнет, но, нападая на врага, она сохраняет семью). В целом отбор играет творческую роль в природе, поскольку из ненаправленных наследственных изменений закрепляются те, которые могут привести к образованию новых групп особей, более совершенных в данных условиях существования.
Различают три основные формы естественного отбора: стабилизирующий, движущий и разрывающий (дизруптивный) (табл.).

Формы естественного отбора

ФормаХарактеристикаПримерыСтабилизирующийНаправлен на сохранение мутаций, ведущих к меньшей изменчивости средней величины признака. Действует при относительно постоянных условиях окружающей среды, то есть пока сохраняются условия, повлёкшие образование того или иного признака или свойства.Сохранение у насекомоопыляемых растений размеров и формы цветка, так как цветки должны соответствовать размерам тела насекомого-опылителя. Сохранение реликтовых видов.ДвижущийНаправлен на сохранение мутаций, изменяющих среднюю величину признака. Возникает при изменении условий окружающей среды. Особи популяции имеют некоторые отличия по генотипу и фенотипу, и при длительном изменении внешней среды преимущество в жизнедеятельности и размножении может получить часть особей вида с некоторыми отклонениями от средней нормы. Вариационная кривая смещается в направлении приспособления к новым условиям существования.Возникновение у насекомых и грызунов устойчивости к ядохимикатам, у микроорганизмов — к антибиотикам. Потемнение окраски берёзовой пяденицы (бабочки) в развитых индустриальных районах Англии (индустриальный меланизм). В этих районах кора деревьев становится тёмной из-за исчезновения лишайников, чувствительных к загрязнению атмосферы, а тёмные бабочки менее заметны на стволах деревьев.Разрывающий (дизруптивный)Направлен на сохранение мутаций, ведущих к наибольшему отклонению от средней величины признака. Разрывающий отбор проявляется в том случае, если условия среды изменяются так, что преимущество приобретают особи с крайними отклонениями от средней нормы. В результате разрывающего отбора формируется полиморфизм популяции, то есть наличие нескольких, различающихся по какому-либо признаку групп.При частых сильных ветрах на океанических островах сохраняются насекомые либо с хорошо развитыми крыльями, либо с рудиментарными.

Краткая история эволюции органического мира

Возраст Земли около 4,6 млрд лет. Жизнь на Земле возникла в океане более 3,5 млрд лет назад.
Краткая история развития органического мира представлена в таблице. Филогенез основных групп организмов отражен на рисунке.
Историю развития жизни на Земле изучают по ископаемым останкам организмов или следам их жизнедеятельности. Они встречаются в горных породах разного возраста.
Геохронологическая шкала истории Земли разделена на эры и периоды.

Источник

Эволюционная биология

Эволюционная биология — междисциплинарная область исследований, поскольку она включает в себя как полевые, так и лабораторные направления различных наук. Вклад в эволюционную биологию вносят исследования в таких узкоспециальных областях, как териология, орнитология или герпетология, которые обобщаются для получения ясной картины развития всего органического мира. Палеонтологи и геологи анализируют окаменелости, чтобы получить сведения о темпах и формах эволюции, а популяционная генетика исследует эти же вопросы теоретически. Экспериментаторы используют селекцию дрозофил для лучшего понимания многих проблем эволюционной биологии, например эволюции старения. В 1990-х годах биология развития вернулась в эволюционную биологию после длительного забвения в виде новой синтетической дисциплины — эволюционной биологии развития.

Содержание

История

Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Из названия книги Джулиана Хаксли «Evolution: The Modern synthesis» [7] в научную литературу проник термин «современный синтез», обозначивший новый подход к эволюционным процессам. Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Джорджем Симпсоном в 1949 году. Эта теория стала основой для развития эволюционной биологии во второй половине XX века. Подавляющее число новых идей в этой области рождалось из дискуссий вокруг синтетической теории, причем как из её защиты, так и из критики.

Методы эволюционной биологии

Эволюционная биология широко использует методы смежных наук. Опыт, накопленный палеонтологией, морфологией, генетикой, биогеографией, систематикой и другими дисциплинами, стал той базой, которая позволила превратить метафизические идеи о развитии живых существ в научный факт. Далее приводится описание различных методов приблизительно в той последовательности, в которой они входили в исследования по эволюции.

Палеонтологические методы

Биогеографические методы

Морфологические методы

Морфологические (сравнительно-анатомические, гистологические и др.) методы позволяют на основе сравнения сходств и различий в строении организмов судить о степени их родства. Методы сравнительной анатомии, наряду с палеонтологическими, были одними из первых, позволивших поставить эволюционные представления на рельсы биологической науки.

Молекулярно-генетические методы

Макромолекулярные данные, под которыми имеется в виду последовательности генетического материала и белков, накапливаются всё быстрыми темпами благодаря успехам молекулярной биологии. Для эволюционной биологии быстрое накопление данных последовательностей целых геномов имеет значительную ценность, потому что сама природа ДНК позволяет использовать его как «документ» эволюционной истории. Сравнения последовательности ДНК разных генов у разных организмов могут сказать ученому много нового об эволюционных взаимоотношениях организмов, которые не могут иначе быть обнаружены на основе на морфологии, или внешней форме организмов, и их внутренней структуре. Поскольку геномы эволюционируют через постепенное накопление мутаций, количество отличий последовательности нуклеотидов между парой геномов разных организмов должно указать, как давно эти два генома разделили общего предка. Два генома, которые разделились в недавнем прошлом, должны иметь меньшие отличий, чем два генома, чей общий предок очень давний. Потому, сравнивая разные геномы друг с другом, возможно получить сведения об эволюционном взаимоотношения между ними. Это является главной задачей молекулярной филогенетики.

Теоретическая эволюционная биология

В современной эволюционной биологии сосуществует несколько теорий, описывающих эволюционные процессы. Такое сосуществование, хотя и не всегда мирное, объясняется тем, что каждая из теорий уделяет основное внимание ограниченной группе факторов. Так синтетическая теория делает упор на популяционно-генетические процессы, а эпигенетическая — на онтогенетическое развитие. Проблемы, связанные с эволюцией биоценозов как целого, освещает экосистемная теория эволюции, находящаяся в начальной стадии разработки. В то же время теория прерывистого равновесия дает представление о сменах режимов эволюционного процесса, хотя мало что может сказать об их причинах.

Синтетическая теория эволюции

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Р. Фишера (1918—1930), Дж. Б. С. Холдейна-младшего (1924), С. Райта (1931; 1932), учение Дарвина приобрело прочный генетический фундамент.

Статья С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского и Ф. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации — новые варианты генов.

Нейтральная теория молекулярной эволюции

Теория нейтральной эволюции не оспаривает решающей роли естественного отбора в развитии жизни на Земле. Дискуссия ведётся касательно доли мутаций, имеющих приспособительное значение. Большинство биологов признают ряд результатов теории нейтральной эволюции, хотя и не разделяют некоторые сильные утверждения, первоначально высказанные Кимурой. Теория нейтральной эволюции объясняет процессы молекулярной эволюции живых организмов на уровнях не выше организменных. Но для объяснения прогрессивной эволюции она не подходит по математическим соображениям. Исходя из статистики для эволюции, мутации могут как возникать случайно, вызывая приспособления, так и те изменения, которые возникают постепенно. Теория нейтральной эволюции не противоречит теории естественного отбора, она лишь объясняет механизмы проходящие на клеточном, надклеточном и органном уровнях.

Сравнительная характеристика теорий филетического градуализма (вверху) с теорией прерывистого равновесия (внизу): прерывистое равновесие достигается за счёт быстрых изменений в морфологии

Теория прерывистого равновесия

В 1972 году палеонтологами Нильсом Элдриджем и Стивеном Гулдом была предложена теория прерывистого равновесия, утверждающая, что эволюция существ, размножающихся половым путём, происходит скачками, перемежающимися с длительными периодами, в которых не происходит существенных изменений. Согласно этой теории, фенотипическая эволюция, эволюция свойств, закодированных в геноме, происходит в результате редких периодов образования новых видов ( кладогенез ), которые протекают относительно быстро по сравнению с периодами устойчивого существования видов. Теория стала своеобразным возрождением сальтационной концепции. Принято противопоставлять теорию прерывистого равновесия теории филетического градуализма, которая утверждает, что бо́льшая часть процессов эволюции протекает равномерно, в результате постепенной трансформации видов.

Эволюционная биология развития

В последние десятилетия эволюционная теория получила импульс от исследований в области биологии развития. Открытие hox-генов и более полное понимание генетического регулирования эмбриогенеза стало основой для глубокого продвижения в теории морфологической эволюции, связи индивидуального и филогенетического развития, эволюции новых форм на основе прежнего набора структурных генов.

Экспериментальная эволюционная биология

Что изучает наука эволюция в биологии. Смотреть фото Что изучает наука эволюция в биологии. Смотреть картинку Что изучает наука эволюция в биологии. Картинка про Что изучает наука эволюция в биологии. Фото Что изучает наука эволюция в биологии

Тля из подсемейства Aphidinae — объект опытов Шапошникова по искусственной эволюции

Опыты Шапошникова

В конце 1950-х — начале 1960-х годов советским биологом Георгием Шапошниковым была проведена серия экспериментов, в процессе которых проводилась смена кормовых растений у различных видов тлей. Во время опытов впервые наблюдалась репродуктивная изоляция использованных в эксперименте особей от исходной популяции, что свидетельствует об образовании нового вида.

Эксперимент по эволюции E. coli

См. также

Примечания

Литература

На русском языке

Научно-популярная

Учебная и научная

На английском языке

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *