Что изучает математика в начальной школе
Методика преподавания математики в начальных классах. Особенности обучения предмету младших школьников
Математику дети начинают изучать с первого класса. Учителю младшей школы нужно привить детям любовь к важному и сложному предмету, а для этого нужны глубокие знания в области современной методики преподавания математики в начальных классах. О том, где и как получить их, читайте в нашей статье.
Содержание курса математики в начальной школе
В младших классах дети изучают арифметику целых чисел и величин, получают общие представления о понятиях алгебры и геометрии. Теория на уроках математики тесно взаимосвязана с практикой. Материал дается отдельными блоками, но связывается с нумерацией чисел, которая исследуется поэтапно. В конце курса дети знакомятся с тысячей. Параллельно с нумерацией младшим школьникам нужно освоить различные арифметические действия: сложение и вычитание, умножение и деление. К этим блокам математических знаний добавляется материал, включающий сведения о дробях, величинах, основах геометрии и алгебры.
Для чего ученикам младших классов математика?
Преподавание математики в начальной школе позволяет решить сразу несколько задач:
Популярные методы преподавания математики в начальных классах
Чаще всего на уроках математики в младших классах используются следующие метод ы:
Что нужно учитывать при проведении уроков математики в начальных классах?
Объясняя новый материал, учителю нужно связывать его с ранее пройденными темами. Для этого педагог вовлекает учеников в совместную работу, побуждая их воспроизводить имеющиеся знания, опираться на свой прошлый учебный опыт. При этом широко используются иллюстративные таблицы, предметные пособия, дидактический раздаточный материал, чертежи, схемы и другие элементы наглядности.
Где научиться преподаванию математики в начальных классах?
Естественно, если вы окончили педагогический вуз, колледж или техникум и получили квалификацию учителя начальных классов, то вы знакомы и с методикой преподавания математики в 1-4 классах. Но что делать, если вы решили стать педагогом, а образование у вас не профильное? Или вы отучились давно и не работали по специальности, а теперь решили все же пойти в школу и хотите освежить и актуализировать свои знания, познакомиться с текущей редакцией ФГОС НОО? В этом случае рекомендуем пройти дистанционную* программу профессиональной переподготовки:
Квалификация: Учитель начальных классов
*Форма обучения – заочная. Применение электронного обучения, дистанционных образовательных технологий при реализации образовательных программ.
Заявка на обучение или
консультацию
Заполните форму, и специалист отдела по организации приема свяжется с Вами в ближайшее время.
Зачем нужна математика в начальной школе?
Практическая польза от изучения математики в начальной школе так же, как и при освоении большинства других предметов, ограничена. Знания, необходимые для жизни, сводятся к обучению счету, то есть к арифметике, хотя при наличии калькуляторов многим кажется, что и уметь считать уже не обязательно. А уж тем более изучать математику дальше, когда начинаются формулы, теоремы, функции с графиками, не говоря уже о тригонометрии…
Почему же во всем мире детей продолжают обучать этой непростой науке?
Потому что от математики есть развивающая польза, ведь еще Ломоносов говорил, что она «ум в порядок приводит». Математика формирует мышление ребенка, развивает логику, способность к анализу, умение делать выводы, тренирует память, воображение и так далее.
В любой современной системе общего образования математика занимает одно из центральных мест, что, несомненно, говорит об уникальности этой области знаний.
Что представляет собой современная математика? Зачем она нужна?
Эти и подобные им вопросы часто задают учителям дети. И каждый раз ответ будет разным в зависимости от уровня развития ребенка и его образовательных потребностей.
Часто говорят, что математика – это язык современной науки. Однако представляется, что это высказывание имеет существенный дефект. Язык математики распространен так широко и так часто оказывается эффективным именно потому, что математика к нему не сводится.
Выдающийся отечественный математик А.Н. Колмогоров писал: «Математика не просто один из языков. Математика – это язык плюс рассуждения, это как бы язык и логика вместе. Математика – орудие для размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение с другим. …
Очевидные сложности природы с ее странными законами и правилами, каждое из которых допускает отдельное очень подробное объяснение, на самом деле тесно связаны. Однако если вы не желаете пользоваться математикой, то в этом огромном многообразии фактов вы не увидите, что логика позволяет переходить от одного к другому».
Таким образом, математика позволяет сформировать определенные формы мышления, необходимые для изучения окружающего нас мира. Школьнику становится по силам любая задача, а как правильно решать задачи по математике – смотрим источник.
В настоящее время все более ощутимой становится диспропорция между степенью наших познаний природы и пониманием человека, его психики, процессов мышления. У. У. Сойер в книге «Прелюдия к математике» отмечает: «Можно научить учеников решать достаточно много типов задач, но подлинное удовлетворение придет лишь тогда, когда мы сумеем передать нашим воспитанникам не просто знания, а гибкость ума, которая дала бы им возможность в дальнейшем не только самостоятельно решать, но и ставить перед собой новые задачи».
Конечно, здесь существуют определенные границы, о которых нельзя забывать: многое определяется врожденными способностями, талантом. Однако можно отметить целый набор факторов, зависящих от образования и воспитания. Это делает чрезвычайно важной правильную оценку огромных не использованных еще возможностей образования в целом и математического образования, в частности.
Наша система образования устроена так, что для многих школа дает единственную в жизни возможность приобщиться к математической культуре, овладеть ценностями, заключенными в математике.
Каково влияние школьной математики на воспитание творческой личности?
Обучение на уроках математики искусству решать задачи доставляет нам исключительно благоприятную возможность для формирования у учащихся определенного склада ума. Необходимость исследовательской деятельности развивает интерес к закономерностям, учит видеть красоту и гармонию человеческой мысли. Все это является на наш взгляд важнейшим элементом общей культуры.
Важное влияние оказывает курс математики на формирование различных форм мышления: логического, пространственно-геометрического, алгоритмического. Любой творческий процесс начинается с формулировки гипотезы. Математика при соответствующей организации обучения, будучи хорошей школой построения и проверки гипотез, учит сравнивать различные гипотезы, находить оптимальный вариант, ставить новые задачи, искать пути их решения. Помимо всего прочего, она вырабатывает еще и привычку к методичной работе, без которой не мыслим ни один творческий процесс. Максимально раскрывая возможности человеческого мышления, математика является его высшим достижением. Она помогает человеку в осознании самого себя и формировании своего характера.
Это то немногое из большого списка причин, в силу которых математические знания должны стать неотъемлемой частью общей культуры и обязательным элементом в воспитании и обучении ребенка.
Как изучается математика в начальной школе?
Фундамент математических знаний закладывается в начальной школе. Но, к сожалению, как сами математики, так методисты и психологи уделяют весьма малое внимание именно содержанию начальной математики. Достаточно сказать, что программа по математике в начальной школе (I – IV классы) в основных своих чертах сложилась еще 50-60 лет назад и отражает, естественно, систему математических, методических и психологических представлений того времени.
Рассмотрим характерные особенности государственного стандарта по математике в начальной школе.
Основным ее содержанием являются целые числа и действия над ними, изучаемые в определенной последовательности. Вначале изучаются четыре действия в пределе 10 и 20, затем – устные вычисления в пределе 100, устные и письменные вычисления в пределе 1000 и, наконец, в пределе миллионов и миллиардов. В IV классе изучаются некоторые зависимости между данными и результатами арифметических действий, а также простейшие дроби.
Наряду с этим программа предполагает изучение метрических мер и мер времени, овладение умением пользоваться ими для измерения, знание некоторых элементов наглядной геометрии – вычерчивание прямоугольника и квадрата, измерение отрезков, площадей прямоугольника и квадрата, вычисление объемов.
Полученные знания и навыки ученики должны применять к решению задач и к выполнению простейших расчетов. На протяжении всего курса решение задач проводится параллельно изучению чисел и действий – для этого отводится половина соответствующего времени. Решение задач помогает учащимся понять конкретный смысл действий, уяснить различные случаи их применения, установить зависимость между величинами, получить элементарные навыки анализа и синтеза.
С I по IV класс дети решают следующие основные типы задач (простых и составных): на нахождение суммы и остатка, произведения и частного, на увеличение и уменьшение данных чисел, на разностное и кратное сравнение, на простое тройное правило, на пропорциональное деление, на нахождение неизвестного по двум разностям, на вычисление среднего арифметического и некоторые другие виды задач.
С разными типами зависимостей величин дети сталкиваются при решении задач. Но весьма характерно – учащиеся приступают к задачам после и по мере изучения чисел; главное, что требуется при решении – это найти числовой ответ. Дети с большим трудом выявляют свойства количественных отношений в конкретных, частных ситуациях, которые принято считать арифметическими задачами.
Практика показывает, что манипулирование числами часто заменяет действительный анализ условий задачи с точки зрения зависимостей реальных величин. Задачи, вводимые в учебники, не представляют к тому же системы, в которой более «сложные» ситуации были бы связаны и с более «глубокими» пластами количественных отношений.
Задачи одной и той же трудности можно встретить и в начале, и в конце учебника. Они меняются от раздела к разделу и от класса к классу по запутанности сюжета (возрастает число действий), по рангу чисел (от десяти до миллиарда), по сложности физических зависимостей (от задач на распределение до задач на движение) и по другим параметрам.
Учащиеся начальных классов не получают адекватных, полноценных знаний о зависимостях величин и общих свойствах количества ни при изучении элементов теории чисел, ибо они в школьном курсе связаны по преимуществу с техникой вычислений, ни при решении задач, ибо последние не обладают соответствующей формой и не имеют требуемой системы. Попытки методистов усовершенствовать приемы преподавания хотя и приводят к частным успехам, однако не меняют общего положения дела, так как они заранее ограничены рамками принятого содержания.
Но, несмотря ни на что, именно на уроках математики в начальной школе учащиеся получают знания о размерах и формах, учатся правильно ориентироваться в пространстве, выполнять логические и аналитические операции; именно уроки математики учат детей думать и развивают интеллект. Имея все эти навыки, ребенок может полноценно осваивать окружающий его мир.
Автор: Н.А. Родионова,
учитель начальных классов
МОУ «Школа-интернат №53» г. Новоуральск.
Особенности изучения предмета «Математика» в начальной школе
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Особенности изучения предмета «Математика» в начальной школе
Образование, полученное в начальной школе, служит базой, фундаментом для последующего обучения. Определить современные требования к начальной школе, обеспечить качество начального образования- основные задачи государственных образовательных стандартов нового поколения.
В начальной школе математика служит опорным предметом для изучения смежных дисциплин, а в дальнейшем знания и умения, приобретенные при ее изучении, и первоначальное овладение математическим языком станут необходимыми для применения в жизни и фундаментом обучения в старших классах школы.
Весь программный материал представляется концентрически, что позволяет постепенно углублять умения и навыки, формировать осознанные способы математической деятельности. Характерными особенностями содержания математики являются: наличие содержания, обеспечивающего формирование общих учебных умений, навыков и способов деятельности; возможность осуществлять межпредметные связи с другими учебными предметами начальной школы. Примерная программа определяет также необходимый минимум практических работ.
Изучение математики в начальной школе направлено на достижение следующих целей:
– математическое развитие младшего школьника: использование математических представлений для описания окружающих предметов, процессов, явлений в количественном и пространственном отношении; формирование способности к продолжительной умственной деятельности, основ логического мышления, пространственного воображения, математической речи и аргументации, способности различать обоснованные и необоснованные суждения.
– Освоение начальных математических знаний. Формирование умения решать учебные и практические задачи средствами математики:
-вести поиск информации (фактов, сходства, различий, закономерностей, оснований для упорядочивания, вариантов);
-понимать значение величин и способов их измерения;
-использовать арифметические способы для разрешения сюжетных ситуаций;
-работать с алгоритмами выполнения арифметический действий, решения задач, проведения простейших построений;
-проявлять математическую готовность к продолжению образования.
– Воспитание критичности мышления, интереса к умственному труду, стремления использовать математические знания в повседневной жизни.
Если изучение предмета «Математика» выдвигает цели, то должны быть и результаты. В федеральном государственном стандарте прописано, что по предмету «Математика» на пороге выпуска из начальной школы, ученик должен уметь:
1) использовать начальные математические знания для описания и объяснения окружающих предметов, процессов, явлений, а также оценки их количественных и пространственных отношений;
2) владеть основами логического и алгоритмического мышления, пространственного воображения и математической речи, измерения, пересчета, прикидки и оценки, наглядного представления данных и процессов, записи и выполнения алгоритмов;
3) использовать начальный опыт применения математических знаний для решения учебно-познавательных и учебно-практических задач;
4) выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, умение действовать в соответствии с алгоритмом и строить простейшие алгоритмы, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами, графиками и диаграммами, цепочками, совокупностями, представлять, анализировать и интерпретировать данные.
Говоря об особенностях изучения предмета «Математика» в начальной школе нельзя не коснуться учебного плана. В федеральном базисном учебном плане на изучение математики в каждом классе начальной школы отводится 4 часа в неделю, всего – 540 часов. Основное содержание обучения в примерной программе представлено крупными блоками. Такое построение программы позволяет создавать различные модели курса математики, по-разному структурировать содержание учебников, распределять разными способами учебный материал и время для его изучения.
В его содержании принято выделять следующие блоки:
1) «Числа и вычисления»;
2) «Арифметические действия»;
3) «Работа с текстовыми задачами»;
4) «Пространственные отношения. Геометрические фигуры»;
5) «Геометрические величины»;
6) «Работа с информацией».
Предусмотрен резерв свободного учебного времени – 10% от общего объема учебных часов, то есть 54 учебных часа на 4 учебных года. Этот резерв может быть использован по своему усмотрению разработчиками программ для авторского наполнения указанных содержательных линий.
Нельзя не сказать и о принципах преподавания предмета «Математика», их выделяют 9:
1)По возможности, значение (определение) каждого математического термина, употребляющегося на уроке, должно быть пояснено и повторено учениками. Как правило, в пределах одного урока упоминается не так много терминов (5-10 штук), и вряд ли придется потратить больше 2-3 минут на пояснение их значений. Так, например, при изучении темы «Нахождение дроби от числа» следует пояснить, что такое числитель, что такое знаменатель, что такое обыкновенная дробь и каков смысл обыкновенных дробей. По усмотрению учителя, это повторение может осуществляться: в ходе устного опроса класса, в качестве дополнительных вопросов при решении задач у доски, учителем при объяснении материала и т.д.
2) Следует при любой возможности проговаривать алгоритмы решения задач со ссылками на аксиомы, определения, теоремы – например, при выполнении заданий у доски ученик ни в коем случае не должен молчать. Так, при нахождение дроби от числа нужно, чтобы ученик не только сформулировал правило «исходное число разделить на знаменатель дроби и умножить на числитель», но и обратить внимание ученика, что результат дробления будет меньше исходного числа, т.к. часть не превосходит целого (это здравый смысл и аксиома математики).
3) Известно, что ребенок усваивает некий факт или алгоритм вычислений в среднем после 7 повторений. Значит, на один определенный навык необходимо решить минимум 7 задач; причем, как можно более простых, чтобы на момент закрепления навыка никакие второстепенные трудности (типа сложности арифметических вычислений) не отвлекали от главного навыка.
4) Навык усваивается при решении множества простых однотипных задач. К сожалению, в современных учебниках математики для 4 класса наблюдается дефицит простых однотипных задач, акцентировано направленных на отработку одного навыка. Как правило, учебники содержит совсем мало простых однотипных задач на определенный навык (по 2-3 задачи на урок, чего явно недостаточно), но при этом содержит огромное количество комплексных задач (объединяющих несколько навыков), задач повышенной трудности и олимпиадных задач – невозможно обучить определенному навыку на задачах такого типа. Ввиду этого, учителю необходимо либо пользоваться дополнительными задачниками, либо придумывать задачи самостоятельно. Это не означает, что не нужно решать комплексные задачи или задачи повышенной трудности – нужно, но не на момент усвоения и закрепления навыка, а после его усвоения!
5) Простые однотипные задачи должны решаться в различных режимах: устно, письменно, при помощи учителя или одноклассников, самостоятельно в тетрадях, у доски, в домашних работах и т.д. – для разных детей могут подходить разные режимы усвоения материала.
6) Принцип раздельного усвоения навыков, предполагающий, что единовременно следует концентрироваться на одном навыке как можно большее время. Например, при изучении сравнения дробей один час нужно потратить на сравнение дробей с одинаковыми знаменателями; второй час – на сравнение дробей с одинаковыми числителями; и только при условии твердого усвоения третий час можно посвятить задачам, в которых используются оба этих типа сравнения.
8) Необходимо обучать детей выполнению самостоятельных и контрольных работ. Для формального получения оценок важно не столько то, что ученик знает и умеет, сколько то, что он может показать при выполнении работ на оценку. Умение решать контрольные работы – навык, который требует, чтобы ему обучали: нужно, чтобы ученик умел справиться с волнением, умел следить за временем, рационально распределять усилия, выделать наиболее легкие и наиболее трудоемкие задачи и т.д. Основная проблема – ученикам не хватает времени. Для тренировки навыка рационального использования времени, как представляется, лучше всего подходят домашние работы: 1-2 раза в неделю можно так компоновать домашние задания, чтобы они по количеству и типу задач были сходны с ближайшей проверочной работой; при этом просить учеников засечь время выполнения домашнего задания.
9) Единственно приемлемая оценка за домашнее задание – 5 баллов. Как представляется, при качественной организации учебного процесса у учеников нет причин получать другую оценку за домашние задания – в отличие от контрольных работ, дома нет волнения, практически нет ограничений по времени и т.д.
Таким образом, нужно отметить, что предмет «Математика» в начальной школе предъявляет, как к учителю, так и к ученику много требований. Математика базируется на 6 блоках, которые пересекаются во всех классах.
Математика как учебный предмет начального общего образования теория
Математика как учебный предмет начального общего образования теория
Просмотр содержимого документа
«Математика как учебный предмет начального общего образования теория»
Математика как учебный предмет начального общего образования
Обучение математике является важнейшей составляющей начального общего образования. Этот предмет играет важную роль в формировании у младших школьников умения учиться.
Начальное обучение математике закладывает основы для формирования приёмов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинно-следственные связи, закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определённые обобщённые знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а также являются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.
Усвоенные в начальном курсе математики знания и способы действий необходимы не только для дальнейшего успешного изучения математики и других школьных дисциплин, но и для решения многих практических задач во взрослой жизни.
При этом подходы к раскрытию математического содержания в существующих УМК по математике разные. Это обосновывает концепцию авторского коллектива.
Моро М. И., Бантова М. А., Бельтюкова Г. В., Волкова С. И., Степанова С. В.. «Математика. 1-4 классы» Предметная линия учебников системы «Школа России».
Начальный курс математики является курсом интегрированным: в нём объединён арифметический, геометрический и алгебраический материал.
Содержание обучения представлено в программе разделами: «Числа и величины», «Арифметические действия», «Текстовые задачи», «Пространственные отношения. Геометрические фигуры», «Геометрические величины», «Работа с информацией».
Арифметическим ядром программы является учебный материал, который, с одной стороны, представляет основы математической науки, а с другой — содержание, отобранное и проверенное многолетней педагогической практикой, подтвердившей необходимость его изучения в начальной школе для успешного продолжения образования.
Основа арифметического содержания — представления о натуральном числе и нуле, арифметических действиях (сложение, вычитание, умножение и деление). На уроках математики у младших школьников будут сформированы представления о числе как результате счёта, о принципах образования, записи и сравнения целых неотрицательных чисел. Учащиеся научатся выполнять устно и письменно арифметические действия с целыми неотрицательными числами в пределах миллиона; узнают, как связаны между собой компоненты и результаты арифметических действий; научатся находить неизвестный компонент арифметического действия по известному компоненту и результату действия; усвоят связи между сложением и вычитанием, умножением и делением; освоят различные приёмы проверки выполненных вычислений. Младшие школьники познакомятся с калькулятором и научатся пользоваться им при выполнении некоторых вычислений, в частности при проверке результатов арифметических действий с многозначными числами.
Программа предусматривает ознакомление с величинами (длина, площадь, масса, вместимость, время) и их измерением, с единицами измерения однородных величин и соотношениями между ними.
Важной особенностью программы является включение в неё элементов алгебраической пропедевтики (выражения с буквой, уравнения и их решение). Как показывает многолетняя школьная практика, такой материал в начальном курсе математики позволяет повысить уровень формируемых обобщений, способствует более глубокому осознанию взаимосвязей между компонентами и результатом арифметических действий, расширяет основу для восприятия функциональной зависимости между величинами, обеспечивает готовность выпускников начальных классов к дальнейшему освоению алгебраического содержания школьного курса математики.
Особое место в содержании начального математического образования занимают текстовые задачи. Работа с ними в данном курсе имеет свою специфику и требует более детального рассмотрения.
Система подбора задач, определение времени и последовательности введения задач того или иного вида обеспечивают благоприятные условия для сопоставления, сравнения, противопоставления задач, сходных в том или ином отношении, а также для рассмотрения взаимообратных задач. При таком подходе дети с самого начала приучаются проводить анализ задачи, устанавливая связь между данными и искомым, и осознанно выбирать правильное действие для её решения. Решение некоторых задач основано на моделировании описанных в них взаимосвязей между данными и искомым.
Решение текстовых задач связано с формированием целого ряда умений: осознанно читать и анализировать содержание задачи (что известно и что неизвестно, что можно узнать по данному условию и что нужно знать для ответа на вопрос задачи); моделировать представленную в тексте ситуацию; видеть различные способы решения задачи и сознательно выбирать наиболее рациональные; составлять план решения, обосновывая выбор каждого арифметического действия; записывать решение (сначала по действиям, а в дальнейшем составляя выражение); производить необходимые вычисления; устно давать полный ответ на вопрос задачи и проверять правильность её решения; самостоятельно составлять задачи.
Работа с текстовыми задачами оказывает большое влияние на развитие у детей воображения, логического мышления, речи. Решение задач укрепляет связь обучения с жизнью, углубляет понимание практического значения математических знаний, пробуждает у учащихся интерес к математике и усиливает мотивацию к её изучению. Сюжетное содержание текстовых задач, связанное, как правило, с жизнью семьи, класса, школы, событиями в стране, городе или селе, знакомит детей с разными сторонами окружающей действительности; способствует их духовно-нравственному развитию и воспитанию: формирует чувство гордости за свою Родину, уважительное отношение к семейным ценностям, бережное отношение к окружающему миру, природе, духовным ценностям; развивает интерес к занятиям в различных кружках и спортивных секциях; формирует установку на здоровый образ жизни.
При решении текстовых задач используется и совершенствуется знание основных математических понятий, отношений, взаимосвязей и закономерностей. Работа с текстовыми задачами способствует осознанию смысла арифметических действий и математических отношений, пониманию взаимосвязи между компонентами и результатами действий, осознанному использованию действий.
Программа включает рассмотрение пространственных отношений между объектами, ознакомление с различными геометрическими фигурами и геометрическими величинами. Учащиеся научатся распознавать и изображать точку, прямую и кривую линии, отрезок, луч, угол, ломаную, многоугольник, различать окружность и круг. Они овладеют навыками работы с измерительными и чертёжными инструментами (линейка, чертёжный угольник, циркуль). В содержание включено знакомство с простейшими геометрическими телами: шаром, кубом, пирамидой. Изучение геометрического содержания создаёт условия для развития пространственного воображения детей и закладывает фундамент успешного изучения систематического курса геометрии в основной школе.
Программой предусмотрено целенаправленное формирование совокупности умений работать с информацией. Эти умения формируются как на уроках, так и во внеурочной деятельности — на факультативных и кружковых занятиях. Освоение содержания курса связано не только с поиском, обработкой, представлением новой информации, но и с созданием информационных объектов: стенгазет, книг, справочников. Новые информационные объекты создаются в основном в рамках проектной деятельности. Проектная деятельность позволяет закрепить, расширить и углубить полученные на уроках знания, создаёт условия для творческого развития детей, формирования позитивной самооценки, навыков совместной деятельности с взрослыми и сверстниками, умений сотрудничать друг с другом, совместно планировать свои действия и реализовывать планы, вести поиск и систематизировать нужную информацию.
Предметное содержание программы направлено на последовательное формирование и отработку универсальных учебных действий, развитие логического и алгоритмического мышления, пространственного воображения и математической речи.
Большое внимание в программе уделяется формированию умений сравнивать математические объекты (числа, числовые выражения, различные величины, геометрические фигуры и т. Д.), выделять их существенные признаки и свойства, проводить на этой основе классификацию, анализировать различные задачи, моделировать процессы и ситуации, отражающие смысл арифметических действий, а также отношения и взаимосвязи между величинами, формулировать выводы, делать обобщения, переносить освоенные способы действий в изменённые условия.
Знание и понимание математических отношений и взаимозависимостей между различными объектами (соотношение целого и части, пропорциональные зависимости величин, взаимное расположение объектов в пространстве и др.), их обобщение и распространение на расширенную область приложений выступают как средство познания закономерностей, происходящих в природе и в обществе. Это стимулирует развитие познавательного интереса школьников, стремление к постоянному расширению знаний, совершенствованию освоенных способов действий.
Изучение математики способствует развитию алгоритмического мышления младших школьников. Программа предусматривает формирование умений действовать по предложенному алгоритму, самостоятельно составлять план действий и следовать ему при решении учебных и практических задач, осуществлять поиск нужной информации, дополнять ею решаемую задачу, делать прикидку и оценивать реальность предполагаемого результата. Развитие алгоритмического мышления послужит базой для успешного овладения компьютерной грамотностью.
В процессе освоения программного материала младшие школьники знакомятся с языком математики, осваивают некоторые математические термины, учатся читать математический текст, высказывать суждения с использованием математических терминов и понятий, задавать вопросы по ходу выполнения заданий, обосновывать правильность выполненных действий, характеризовать результаты своего учебного труда и свои достижения в изучении этого предмета.
Овладение математическим языком, усвоение алгоритмов выполнения действий, умения строить планы решения различных задач и прогнозировать результат являются основой для формирования умений рассуждать, обосновывать свою точку зрения, аргументировано подтверждать или опровергать истинность высказанного предположения. Освоение математического содержания создаёт условия для повышения логической культуры и совершенствования коммуникативной деятельности учащихся.
Содержание программы предоставляет значительные возможности для развития умений работать в паре или в группе. Формированию умений распределять роли и обязанности, сотрудничать и согласовывать свои действия с действиями одноклассников, оценивать собственные действия и действия отдельных учеников (пар, групп) в большой степени способствует содержание, связанное с поиском и сбором информации.
Программа ориентирована на формирование умений использовать полученные знания для самостоятельного поиска новых знаний, для решения задач, возникающих в процессе различных видов деятельности, в том числе и в ходе изучения других школьных дисциплин.
Математические знания и представления о числах, величинах,
геометрических фигурах лежат в основе формирования общей картины мира и познания законов его развития. Именно эти знания и представления необходимы для целостного восприятия объектов и явлений природы, многочисленных памятников культуры, сокровищ искусства.
Обучение младших школьников математике на основе данной программы способствует развитию и совершенствованию основных познавательных процессов (включая воображение и мышление, память и речь). Дети научатся не только самостоятельно решать поставленные задачи математическими способами, но и описывать на языке математики выполненные действия и их результаты, планировать, контролировать и оценивать способы действий и сами действия, делать выводы и обобщения, доказывать их правильность. Освоение курса обеспечивает развитие творческих способностей, формирует интерес к математическим знаниям и потребность в их расширении, способствует продвижению учащихся начальных классов в познании окружающего мира.
Содержание курса имеет концентрическое строение, отражающее последовательное расширение области чисел. Такая структура позволяет соблюдать необходимую постепенность в нарастании сложности учебного материала, создаёт хорошие условия для углубления формируемых знаний, отработки умений и навыков, для увеличения степени самостоятельности (при освоении новых знаний, проведении обобщений, формулировании выводов), для постоянного совершенствования универсальных учебных действий.
Структура содержания определяет такую последовательность изучения учебного материала, которая обеспечивает не только формирование осознанных и прочных, во многих случаях доведённых до автоматизма навыков вычислений, но и доступное для младших школьников обобщение учебного материала, понимание общих принципов и законов, лежащих в основе изучаемых математических фактов, осознание связей между рассматриваемыми явлениями. Сближенное во времени изучение связанных между собой понятий, действий, задач даёт возможность сопоставлять, сравнивать, противопоставлять их в учебном процессе, выявлять сходства и различия в рассматриваемых фактах.
Основу данного курса составляют пять взаимосвязанных содержательных линий: элементы арифметики; величины и их измерение; логико-математические понятия; алгебраическая пропедевтика; элементы геометрии.
Для каждой из этих линий отобраны основные понятия, вокруг которых развертывается все содержание обучения. Понятийный аппарат включает следующие четыре понятия, вводимые без определений: число, отношение, величина, геометрическая фигура.
В соответствии с требованиями стандарта начального общего образования в современном учебном процессе предусмотрена работа с информацией (представление, анализ и интерпретация данных, чтение диаграмм и пр.). В данном курсе математики этот материал не выделяется в отдельную содержательную линию, а регулярно присутствует при изучении программных вопросов, образующих каждую из вышеназванных линий содержания обучения.
Общее содержание обучения математике представлено в программе следующими разделами: «Число и счет», «Арифметические действия и их свойства», «Величины», «Работа с текстовыми задачами», «Пространственные отношения. Геометрические фигуры», «Логико-математическая подготовка», «Работа с информацией».
Раскроем основные особенности содержания обучения и методических
подходов к реализации этого содержания в нашем курсе.
Формирование первоначальных представлений о натуральном числе
начинается в первом классе. При этом последовательность изучения материала такова: учащиеся знакомятся с названиями чисел первых двух десятков, учатся называть их в прямом и в обратном порядке; затем, используя изученную последовательность слов (один, два, три… двадцать), учатся пересчитывать предметы, выражать результат пересчитывания числом и записывать его цифрами.
На первом этапе параллельно с формированием умения пересчитывать
предметы начинается подготовка к решению арифметических задач, основанная на выполнении практических действий с множествами предметов.
При этом арифметическая задача предстает перед учащимися как описание некоторой реальной жизненной ситуации; решение сводится к простому пересчитыванию предметов. Упражнения подобраны и сформулированы таким образом, чтобы у учащихся накопился опыт практического выполнения не только сложения и вычитания, но и умножения и деления, что в дальнейшем существенно облегчит усвоение смысла этих действий.
На втором этапе внимание учащихся привлекается к числам, данным в
задаче. Решение описывается словами: «пять и три — это восемь», «пять без
двух — это три», «три по два — это шесть», «восемь на два — это четыре».
Ответ задачи пока также находится пересчитыванием. Такая словесная форма
решения позволяет подготовить учащихся к выполнению стандартных записей решения с использованием знаков действий.
Таблица сложения однозначных чисел и соответствующие случаи вычитания изучаются в 1 классе в полном объеме. При этом изучение табличных случаев сложения и вычитания не ограничивается вычислениями в пределах чисел первого десятка: каждая часть таблицы сложения (прибавление чисел 2, 3, 4, …) рассматривается сразу на числовой области 1 – 20.
Особенностью структурирования программы является раннее ознакомление учащихся с общими способами выполнения арифметических действий. При этом приоритет отдается письменным вычислениям. Устные вычисления ограничены лишь простыми случаями сложения, вычитания, умножения и деления, которые без затруднений выполняются учащимися в уме. Устные приемы вычислений часто выступают как частные случаи общих правил.
Обучение письменным приёмам сложения и вычитания начинается во 2
классе. Овладев этими приемами с двузначными числами, учащиеся легко переносят полученные умения на трехзначные числа (3 класс) и вообще на любые многозначные числа (4 класс).
Письменные приёмы выполнения умножения и деления включены в программу 3 класса. Изучение письменного алгоритма деления проводится в
два этапа. На первом этапе предлагаются лишь такие случаи деления, когда
частное является однозначным числом. Это наиболее ответственный и трудный этап — научить ученика находить одну цифру частного. Овладев этим умением (при использовании соответствующей методики), ученик легко научится находить каждую цифру частного, если частное — неоднозначное число (второй этап).
В целях усиления практической направленности обучения в арифметическую часть программы с 1 класса включен вопрос об ознакомлении учащихся с микрокалькулятором и его использовании при выполнении арифметических расчетов.
Изучение величин распределено по темам программы таким образом, что формирование соответствующих умений производится в течение продолжительных интервалов времени.
С первой из величин (длиной) дети начинают знакомиться в 1 классе: они получают первые представления о длинах предметов и о практических
способах сравнения длин; вводятся единицы длины — сантиметр и дециметр.
Длина предмета измеряется с помощью шкалы обычной ученической линейки.
Одновременно дети учатся чертить отрезки заданной длины (в сантиметрах, в дециметрах, в дециметрах и сантиметрах). Во втором классе вводится метр, а в третьем — километр и миллиметр и рассматриваются важнейшие соотношения между изученными единицами длины.
Понятие площади фигуры — более сложное. Однако его усвоение удается существенно облегчить и при этом добиться прочных знаний и умений благодаря организации большой подготовительной работы. Идея подхода заключается в том, чтобы научить учащихся, используя практические приемы, находить площадь фигуры, пересчитывая клетки, на которые она разбита. Эта работа довольно естественно увязывается с изучением таблицы умножения.
Получается двойной выигрыш: дети приобретают необходимый опыт
нахождения площади фигуры (в том числе прямоугольника) и в то же время за счет дополнительной тренировки (пересчитывание клеток) быстрее запоминают таблицу умножения.
Этот (первый) этап довольно продолжителен. После того как дети приобретут достаточный практический опыт, начинается второй этап, на котором вводятся единицы площади: квадратный сантиметр, квадратный дециметр и квадратный метр. Теперь площадь фигуры, найденная практическим путем (например, с помощью палетки), выражается в этих единицах. Наконец, на третьем этапе во 2 классе, т. е. раньше, чем это делается традиционно, вводится правило нахождения площади прямоугольника. Такая методика позволяет добиться хороших результатов: с полным пониманием сути вопроса учащиеся осваивают понятие «площадь», не смешивая его с понятием «периметр», введённым ранее.
Программой предполагается некоторое расширение представлений младших школьников об измерении величин: в программу введено понятие о точном и приближенном значениях величины. Суть вопроса состоит в том, чтобы учащиеся понимали, что при измерениях с помощью различных бытовых приборов и инструментов всегда получается приближенный результат; поэтому измерить данную величину можно только с определенной точностью.
В этом курсе созданы условия для организации работы, направленной на подготовку учащихся к освоению в основной школе элементарных алгебраических понятий — переменная, выражение с переменной, уравнение.
Эти термины в курсе не вводятся, однако рассматриваются разнообразные выражения, равенства и неравенства, содержащие «окошко» (1–2 классы) и буквы латинского алфавита (3–4 классы), вместо которых подставляются те или иные числа.
На первом этапе работы с равенствами неизвестное число, обозначенное буквой, находится подбором, на втором — в ходе специальной игры «в машину», на третьем — с помощью правил нахождения неизвестных
компонентов арифметических действий.
Обучение решению арифметических задач с помощью составления равенств, содержащих буквы, ограничивается рассмотрением отдельных их видов, на которых иллюстрируется суть метода.
В соответствии с программой учащиеся овладевают многими важными
логико-математическими понятиями. Они знакомятся, в частности, с математическими высказываниями, с логическими связками «и»; «или»; «если…, то»; «неверно, что…», со смыслом логических слов «каждый», «любой», «все», «кроме», «какой-нибудь», составляющими основу логической формы предложения, используемой в логических выводах. К окончанию начальной школы ученик будет отчетливо представлять, что значит доказать какое-либо утверждение, овладеет простейшими способами доказательства, приобретет умение подобрать конкретный пример, иллюстрирующий некоторое общее положение, или привести опровергающий пример, научится применять определение для распознавания того или иного математического объекта, давать точный ответ на поставленный вопрос и пр.
Важной составляющей линии логического развития ученика является обучение его (уже с 1 класса) действию классификации по заданным основаниям и проверка правильности выполнения задания.
В программе четко просматривается линия развития геометрических
представлений учащихся. Дети знакомятся с наиболее распространенными
геометрическими фигурами (круг, многоугольник, отрезок, луч, прямая, куб,
шар, конус, цилиндр, пирамида, прямоугольный параллелепипед), учатся их
различать. Большое внимание уделяется взаимному расположению фигур на плоскости, а также формированию графических умений — построению отрезков, ломаных, окружностей, углов, многоугольников и решению практических задач (деление отрезка пополам, окружности на шесть равных
Большую роль в развитии пространственных представлений играет включение в программу (уже в 1 классе) понятия об осевой симметрии. Дети
учатся находить на рисунках и показывать пары симметричных точек, строить симметричные фигуры.
Важное место в формировании у учащихся умения работать с информацией принадлежит арифметическим текстовым задачам. Работа над задачами заключается в выработке умения не только их решать, но и преобразовать текст: изменять одно из данных или вопрос, составлять и решать новую задачу с изменёнными данными и пр. Форма предъявления текста задачи может быть разной (текст с пропуском данных, часть данных представлена на рисунке, схеме или в таблице), Нередко перед учащимися ставится задача обнаружения недостаточности информации в тексте и связанной с ней необходимости корректировки этого текста.
Г.В. Дорофеев, Т.Н. Миракова, Т.Б. Бука «Математика 1-4» Перспектива
Представленная в программе система обучения математике опирается на наиболее развитые в младшем школьном возрасте эмоциональный и образный компоненты мышления ребенка и предполагает формирование математических знаний и умений на основе широкой интеграции математики с другими областями знания.
Содержание обучения в программе представлено разделами «Числа и величины», «Арифметические действия», «Текстовые задачи», «Пространственные отношения. Геометрические фигуры», «Геометрические величины», «Работа с информацией».
Понятие «натуральное число» формируется на основе понятия «множество». Оно раскрывается в результате практической работы с предметными множествами и величинами. Сначала число представлено как результат счёта, а позже — как результат измерения. Измерение величин рассматривается как операция установления соответствия между реальными предметами и множеством чисел. Тем самым устанавливается связь между натуральными числами и величинами: результат измерения величины выражается числом.
Расширение понятия «число», новые виды чисел, концентры вводятся постепенно в ходе освоения счёта и измерения величин. Таким образом, прочные вычислительные навыки остаются наиважнейшими в предлагаемом курсе. Выбор остального учебного материала подчинён решению главной задачи — отработке техники вычислений.
Арифметические действия над целыми неотрицательными числами рассматриваются в курсе по аналогии с операциями над конечными множествами. Действия сложения и вычитания, умножения и деления изучаются совместно.
Осваивая данный курс математики, младшие школьники учатся моделировать ситуации, иллюстрирующие арифметическое действие и ход его выполнения. Для этого в курсе предусмотрены вычисления на числовом отрезке, что способствует усвоению состава числа, выработке навыков счёта группами, формированию навыка производить вычисления осознанно. Работа с числовым отрезком (или числовым лучом) позволяет ребёнку уже на начальном этапе обучения решать достаточно сложные примеры, глубоко понимать взаимосвязь действий сложения и вычитания, а также готовит учащихся к открытию соответствующих способов вычислений, в том числе и с переходом через десяток, решению задач на разностное сравнение и на увеличение (уменьшение) числа на несколько единиц.
Вычисления на числовом отрезке (числовом луче) не только способствуют развитию пространственных и логических умений, но что особенно важно, обеспечивают закрепление в сознании ребёнка конкретного образа алгоритма действий, правила.
При изучении письменных способов вычислений подробно рассматриваются соответствующие алгоритмы рассуждений и порядок оформления записей.
Основная задача линии моделей и алгоритмов в данном курсе заключается в том, чтобы наряду с умением правильно проводить вычисления сформировать у учащихся умение оценивать алгоритмы, которыми они пользуются, анализировать их, видеть наиболее рациональные способы действий и объяснять их.
Умение решать задачи — одна из главных целей обучения математике в начальной школе. В предлагаемом курсе понятие «задача» вводится не сразу, а по прошествии длительного периода подготовки.
Отсроченный порядок введения термина «задача», её основных элементов, а также повышенное внимание к процессу вычленения задачной ситуации из данного сюжета способствуют преодолению формализма в знаниях учащихся, более глубокому пониманию внешней и внутренней структуры задачи, развитию понятийного, абстрактного мышления. Ребёнок воспринимает задачу не как нечто искусственное, а как упражнение, составленное по понятным законам и правилам.
Иными словами, дети учатся выполнять действия сначала на уровне восприятия конкретных количеств, затем на уровне накопленных представлений о количестве и, наконец, на уровне объяснения применяемого алгоритма вычислений.
На основе наблюдений и опытов учащиеся знакомятся с простейшими геометрическими формами, приобретают начальные навыки изображения геометрических фигур, овладевают способами измерения длин и площадей. В ходе работы с таблицами и диаграммами у них формируются важные для практико-ориентированной математической деятельности умения, связанные с представлением, анализом и интерпретацией данных.
Большинство геометрических понятий вводится без определений. Значительное внимание уделяется формированию умений распознавать и находить модели геометрических фигур на рисунке, среди предметов окружающей обстановки, правильно показывать геометрические фигуры на чертеже, обозначать фигуры буквами, читать обозначения.
В начале курса знакомые детям геометрические фигуры (круг, треугольник, прямоугольник, квадрат, овал) предлагаются лишь в качестве объектов для сравнения или счёта предметов. Аналогичным образом вводятся и элементы многоугольника: углы, стороны, вершины и первые наглядно-практические упражнения на сравнение предметов по размеру. Например, ещё до ознакомления с понятием «отрезок» учащиеся, выполняя упражнения, которые построены на материале, взятом из реальной жизни, учатся сравнивать длины двух предметов на глаз с использованием приёмов наложения или приложения, а затем с помощью произвольной мерки (эталона сравнения). Эти практические навыки им пригодятся в дальнейшем при изучении различных способов сравнения длин отрезков: визуально, с помощью нити, засечек на линейке, с помощью мерки или с применением циркуля и др.
Особое внимание в курсе уделяется различным приёмам измерения величин. Например, рассматриваются два способа нахождения длины ломаной: измерение длины каждого звена с последующим суммированием и «выпрямление» ломаной.
Элементарные геометрические представления формируются в следующем порядке: сначала дети знакомятся с топологическими свойствами фигур, а затем с проективными и метрическими.
В результате освоения курса математики у учащихся формируются общие учебные умения, они осваивают способы познавательной деятельности.
При обучении математике по данной программе в значительной степени реализуются межпредметные связи — с курсами русского языка, литературного чтения, технологии, окружающего мира и изобразительного искусства.
Например, понятия, усвоенные на уроках окружающего мира, учащиеся используют при изучении мер времени (времена года, части суток, год, месяцы и др.) и операций над множествами (примеры множеств: звери, птицы, домашние животные, растения, ягоды, овощи, фрукты и т. д.), при работе с текстовыми задачами и диаграммами (определение массы животного, возраста дерева, длины реки, высоты горного массива, глубины озера, скорости полёта птицы и др.). Знания и умения, приобретаемые учащимися на уроках технологии и изобразительного искусства, используются в курсе начальной математики при изготовлении моделей фигур, построении диаграмм, составлении и раскрашивании орнаментов, выполнении чертежей, схем и рисунков к текстовым задачам и др.
При изучении курса формируется установка на безопасный, здоровый образ жизни, мотивация к творческому труду, к работе на результат. Решая задачи об отдыхе во время каникул, о посещении театров и библиотек, о разнообразных увлечениях (коллекционирование марок, открыток, разведение комнатных цветов, аквариумных рыбок и др.), учащиеся получают возможность обсудить проблемы, связанные с безопасностью и здоровьем, активным отдыхом и др.