Что изучает квантовая биология

СОДЕРЖАНИЕ

История

Приложения

Фотосинтез

Что изучает квантовая биология

В 2017 году первый контрольный эксперимент с исходным белком FMO в условиях окружающей среды подтвердил, что электронные квантовые эффекты стираются в течение 60 фемтосекунд, в то время как общий перенос экситона занимает время порядка нескольких пикосекунд. В 2020 году обзор, основанный на большом количестве контрольных экспериментов и теории, пришел к выводу, что предлагаемые квантовые эффекты как долгоживущие электронные когерентности в системе FMO не выполняются. Вместо этого исследования динамики переноса показывают, что взаимодействия между электронными и колебательными модами возбуждения в комплексах FMO требуют полуклассического, полуквантового объяснения передачи энергии экситона. Другими словами, хотя квантовая когерентность доминирует в краткосрочной перспективе, классическое описание наиболее точно описывает долгосрочное поведение экситонов.

Сет Ллойд также известен своим вкладом в эту область исследований.

Мутация ДНК

Воздействие ультрафиолета и других видов излучения может вызвать мутацию и повреждение ДНК. Излучение также может изменять связи вдоль нити ДНК в пиримидинах и заставлять их связываться сами с собой, создавая димер.

Вибрационная теория обоняния

Обоняние, обоняние, можно разделить на две части; прием и обнаружение химического вещества, а также то, как это обнаружение отправляется и обрабатывается мозгом. Этот процесс обнаружения запаха все еще находится под вопросом. Одна теория, названная « теорией обоняния », предполагает, что определенные обонятельные рецепторы запускаются определенными формами химических веществ, и эти рецепторы посылают в мозг определенное сообщение. Другая теория (основанная на квантовых явлениях) предполагает, что обонятельные рецепторы улавливают вибрацию молекул, которые достигают их, а «запах» обусловлен разными частотами колебаний; эту теорию удачно называют «теорией обоняния».

Хотя теория вибрации имеет некоторые экспериментальные доказательства концепции, в экспериментах было получено множество спорных результатов. В некоторых экспериментах животные способны различать запахи между молекулами с разной частотой и одинаковой структурой, в то время как другие эксперименты показывают, что люди не осознают различие запахов из-за различных молекулярных частот. Однако это не было опровергнуто, и даже было показано, что он влияет на обоняние других животных, кроме людей, таких как мухи, пчелы и рыбы.

Зрение

Последствия квантового видения

Ферментативная активность (квантовая биохимия)

Магниторецепция

Другие биологические приложения

Другие примеры квантовых явлений в биологических системах включают преобразование химической энергии в движение и броуновские двигатели во многих клеточных процессах.

). Примерами дополнительных пар биологических молекул являются ферменты и субстраты, гормоны и рецепторы, а также антитела и поверхностные белки микроорганизмов. Была продемонстрирована ситуация, когда комплементарные молекулы имеют идентичное распределение зарядов, но при обратном положительном и отрицательном зарядах двух молекул вероятность квантового взаимодействия пропорциональна квадрату количества зарядов.

Источник

Что такое квантовая биология

Все во Вселенной состоит из элементарных частиц. Изучением их и связанных с ними явлений занимается квантовая физика — странная наука, где много всего неопределенного. Но что, если квантовые эффекты распространяются не только на квантовые масштабы, но и на жизнь в целом?

Что изучает квантовая биология

Биологи не очень любят связываться с физикой. Будучи студентами, они посещают вводные курсы по физике, а потом благодарят богов науки, что им больше не придется беспокоиться об Эйнштейне, Максвелле и Ньютоне. Что касается квантовой физики, то большинству биологов вообще нет нужды о ней задумываться. Они изучают молекулы в таких крупных масштабах, что им не надо знать ничего сверх основ квантовой механики. Привычной модели молекулы достаточно для изучения взаимодействий между триллионами органических молекул. Физики же изучают квантовую механику в вакууме при почти абсолютном нуле. Принято считать, что в условиях тепла и беспорядка, царящих в живых клетках, квантовые эффекты можно, по сути, игнорировать.

Между тем некоторые ученые предполагают, что существуют биологические феномены, которые можно объяснить квантовой механикой — и только. В своей книге «Что такое жизнь?» Эрвин Шредингер постулировал, что квантовая механика способна оказывать серьезное воздействие на клеточные функции. Он предположил, что генетический материал может храниться и наследоваться посредством сохранения информации в разных квантовых состояниях. И пусть позднее Джеймс Уотсон и Фрэнсис Крик выяснили, что ДНК — переносчик генетической информации, Шредингер дал начало квантовой биологии.

Квантовое туннелирование

Не так давно продуманные до мелочей эксперименты предоставили доказательство того, что квантовая биология сильно влияет на жизнь. Оказалось, ферменты — катализаторы реакций в клетке — используют так называемый туннельный эффект, или квантовое туннелирование. При помощи этого механизма они могут перемещать электрон или протон из одной части молекулы в другую.

Квантовое туннелирование предоставляет ферментамя быстрый и эффективный способ переорганизации молекул для поддержания реакций. Этот процесс невозможно объяснить при помощи классической физики. Для понимания этих реакций необходимы квантовые вероятности и дуальности.

Туннельный эффект также играет роль в мутациях ДНК. ДНК — это двухцепочечная молекула, части которой удерживаются вместе при помощи водородных связей. Эти связи можно изобразить примерно так (см. картинку).

Что изучает квантовая биология

Белые атомы принадлежат водороду. В этом соединении есть две водородные связи. Считается, что атомы водорода могут «перепрыгивать» на другую сторону при помощи квантового туннелирования. Если цепочки ДНК разделены во время прыжка водорода на другую сторону, то эти связи могут скопироваться или воспроизвестись неправильно. Мутация, появившаяся в результате туннелирования водорода, потенциально может вызвать заболевание.

Квантовая когерентность

Фотосинтез — один из самых важных процессов жизни. Когда фотон света попадает в пигмент, он поглощается, а вместо него освобождается электрон. Затем электрон попадает в электрон-транспортную цепь, накапливающую химический потенциал, который можно использовать для генерации АТФ (аденозинтрифосфат, или аденозинтрифосфатная кислота). Но чтобы попасть в электрон-транспортную цепь, электрону нужно переместиться из одной точки, из которой его освобождает электрон, через хлорофилл, в точку, известную как реакционный центр. Есть множество путей, по которым электрон может достичь его.

Что изучает квантовая биология

При помощи принципов квантовой когерентности и квантового запутывания электроны могут перемещаться по самым эффективным путям, не затрачивая энергию на тепло. Согласно квантовой когерентности электроны могут двигаться в нескольких направлениях одновременно из-за своих волнообразных свойств. Таким образом, электроны способны перемещаться по нескольким разным путям одновременно для достижения реакционного центра. Этот феномен позволяет максимально эффективно переносить энергию.

Квантовая когерентность может влиять и на другие аспекты жизни. Некоторые ученые предполагают, что сетчатка человеческого глаза использует когерентность для передачи сигналов из глаза в мозг. Они утверждают, что фотоизомеризация — изменение в структуре фотонного рецептора — происходит так быстро, что такую скорость может обеспечить только квантовая когерентность. С учетом этого в природе вполне может существовать еще множество биохимических путей, использующих квантовую когерентность, и они только и делают, что ждут, когда их наконец откроют.

Квантовая запутанность

Запутанность — одна из самых сложных для понимания концепций квантовой механики. Она описывает взаимодействие между двумя или более квантовыми частицами. И пусть это еще не подтверждено, считается, что квантовая запутанность может объяснить магниторецепцию. Магниторецепция — способность организмов чувствовать магнитное поле и определять свое расположение на местности в соответствии с ним. Птицы и животные используют эту способность, чтобы чувствовать магнитное поле Земли и мигрировать. Долгое время точный механизм этого явления был тайной. Возможно, магнитное поле Земли влияет на механизм, использующий радикальные пары внутри сетчатки, а запутанность внутри этой пары может предоставлять организмам квантовый сигнал, работающий словно компас: об этом рассуждали Джим Аль-Халили и Джонджо МакФадден в своей книге «Жизнь на грани. Ваша первая книга о квантовой биологии».

Что изучает квантовая биология

Что же дальше?

Квантовая механика может влиять на многие биохимические функции. Некоторые считают, что обоняние — то, как мы чувствуем запахи — может быть результатом квантовых вибраций молекул. В то же время существуют исследования, указывающие на то, что с квантовой механикой связано броуновское движение внутри клетки.

В любом случае квантовая биология — молодое направление науки, но похоже, что у него есть серьезный потенциал. Остается только ждать и наблюдать за новыми исследованиями в этой области.

Источник

Что интересного происходит в науке

Страницы

3 июня 2007 г.

Нетривиальные квантовые эффекты в биологии

Наткнулся в архиве на любопытную статью ArXiv:0705.1232, «Нетривиальные квантовые эффекты в биологии: скептическая точка зрения физиков«. Это небольшая заметка (с очень хорошей библиографической подборкой), написанная для готовящегося к выпуску сборника статей «Квантовые аспекты жизни».

Утверждение авторов статьи состоит в том, что никаких предпосылок для более нетривиальных квантовых проявлений в живых системах нет.

Ниже перечислены некоторые из попыток привлечь квантовую механику в биологических системах и их критика авторами статьи.

1. Возникновение наследственности

С «наивно-химической» точки зрения возникновение живых (а точнее, скажем проще, размножающихся и адаптирующихся) систем кажется чрезвычайно маловероятным. (Этот аргумент, кстати, любят использовать и проповедники религии.) Как из таких простых начальных соединений могли возникнуть такие сложные и высоко специфические молекулы как, например, ДНК? Как природа «нашла» удобные молекулы для передачи наследственной информации?

В дополнение к этому авторы отдельно обсуждают распространенное заблуждение, что якобы квантовый компьютер позволяет осуществить быстрый поиск в классической базе данных. Это неверно: быстрый поиск работает только в квантовой базе данных, т.е. база данных уже должна находится в когерентном состоянии. Если этого нет, то квантовый компьютер не дает никакого ускорения.

2. Туннелирование сквозь промежуточные формы

Другой вариант той же идеи: оптимизация естественного отбора при эволюции простейших форм жизни в более сложные.

Как известно, одно из первых возражений к дарвиновскому принципу естественного отбора состояло в том, что не наблюдаются промежуточные формы. Как природа умудряется пропустить их и сразу «слепить новое существо»?

Этот вопрос уже не является каким-то принципиальным препятствием для современного эволюционного учения, но есть и более экзотические предложения, основанные, в частности, на том же квантовом поиске.

Есть попытки описать деятельность мозга как работу некоторого «квантового компьютера». Предполагается, что нейроны играют роль кубитов, между которыми поддерживается квантовая когерентность. При всей своей будоражащей воображение привлекательности это предложение сразу наталкивается на возражение: декогеретность объектов размером с клетку в обычных условиях (ведь нейроны в мозг находятся вовсе не в вакууме при сверхнизких температурах!) составляет порядка 10^(-20) сек. За это время не только не успеет пройти никакой сигнал, но и даже электронные облака едва успеют шелохнутся в самых активных химических реакциях.

Контрвозражение, что есть-де есть механизм коррекции квантовых ошибок, позволяющий устранить разрушающее действие декогеренции, несостоятелен, потому что порог, при котором этот механизм начинает действовать очень высокий. Ориентировочно, требуется, чтобы в каждом единичном акте квантовых вычислений вероятность ошибка составляла не более, чем доли процента, только тогда их можно скорректировать. Но для этого требуется, чтобы время когерентности было существенно больше хотя бы единичного акта квантового вычисления, что конечно в мозге не выполняется.

4. Квантовое сознание

Наконец, есть предложение, восходящее к Пенроузу, о том, что внутри полых трубочек, формирующих цикоскелет нейрона, происходит вызванный гравитацией(!) коллапс волновой функции. Этот коллапс, предполагается, приводит к ощущение самоосознания у высших жизненных форм.

Авторы эту идею, по-настоящему, не критикуют, замечая только, что она опирается на чрезвычайно спекулятивную, никак не проверенную связь между квантовой механикой и гравитацией. Авторы уделяют этому моменту много места, считая, по-видимому, что среди биологов (или просто не-физиков, интересующихся описанными вопросами) нет четкого понимания статуса разных теорий в фундаментальной физике.

Я тут замечу лишь то, что и в обычной нейронауке есть механизмы (связанные с незатухающими нелокализованными возбуждениями с сети нейронов, специфические для мозга с большой поверхностью коры головного мозга), могущие объяснить самоосознание. Конечно, эти предположения требуется проверять экспериментально, но по крайней мере они основаны на «кондовой» физиологии, а не на идеях о квантовой гравитации.

В общем, многие скептические утверждения, приведенные в статье, мне кажутся очевидными, но раз есть группа энтузиастов, которые их не учитывают, то подробное перечисление действительно полезно.

Источник

Что изучает квантовая биология

Математическая модель анализа вибрационного поведения ДНК и использования резонансной частоты ДНК для геномной инженерии.

Инженерный факультет, механический факультет, Международный университет им. Хомейни, Казвин, а / я 34149-16818, Иран

В соответствии с приведенным выше содержанием, основанным на необходимости анализа вибрации ДНК и слабых сторон ранее предложенных моделей, необходимость проведения этого исследования становится более очевидной. Динамическая модель, представленная здесь для ДНК, была названа GMDM (модель ДНК Ghadiri Marvi), она обеспечивается соединением двух плоских нано-изогнутых балок с пружиной и демпфером. Каждый из пучков является моделью для одной из двух цепей ДНК (сахарофосфатный остов). Кроме того, пружина и демпфер являются моделью для водородных связей между азотсодержащими нуклеооснованиями. Эффекты нуклеиновых оснований (цитозин, гуанин, аденин и тимин) также учитываются с учетом их массы (рис. 3).). Кроме того, эффекты ДНК окружающей жидкости (нуклеоплазмы) были применены с использованием уравнений Навье-Стокса. Эффекты изменения температуры на ДНК также применяются к уравнениям с внешней работой. Наконец, используя соотношения всех эффектов, упомянутых выше, и используя принцип Гамильтона, уравнения ДНК будут извлечены.

Следует отметить, что с помощью теории нелокальности были учтены эффекты размера. Решая эти уравнения, естественная частота ДНК будет получена впервые. Численный метод может решить уравнения, полученные из принципа Гамильтона. Обобщенный дифференциально-квадратурный метод (GDQM) является одним из наиболее численных методов, которые можно использовать для решения дифференциальных уравнений.

— Находясь вне плоскости, спираль с изгибом и искривлением

— Быть непрерывной моделью

— Учитывая влияние массы и вязкоупругости нуклеоплазмы

— Учитывая последствия повышения температуры

— Учитывая положение нуклеиновых оснований.

Поскольку поглощение энергии нуклеоплазмой очень незначительно, можно сделать вывод, что во время резонанса диапазон колебаний амплитуды ДНК очень велик и при сильных колебаниях и использовании рестрикционного фермента последовательность ДНК может быть дезорганизована, а ДНК в раковых клетках теряет способность к протеинизации и, следовательно, таким образом можно контролировать рак.

Источник

«Бактерии Шрёдингера»: чудо квантовой биологии?

Квантовый мир весьма странный. В теории, да и на практике, до определенной степени, принципы квантового мира требуют, чтобы частица могла оказываться в двух местах одновременно — это парадоксальное явление известно как суперпозиция — и чтобы две частицы могли «запутываться», обмениваясь информацией через сколь угодно большие расстояния. Как именно — никто не знает в точности. Самым известным примером странности квантового мира можно назвать кота Шрёдингера, мысленный эксперимент, проведенный Эрвином Шрёдингером в 1935 году.

Что изучает квантовая биология

Бактерии бывают разными.

Австрийский физик мысленно поместил кота в ящик с потенциально смертельным радиоактивным веществом. Странные законы квантовой механики позволяли коту существовать в суперпозиции двух состояний — одновременно живому и мертвому — по крайней мере, до тех пор, пока ящик не будет вскрыт и его содержимое — обнаружено.

Тайны квантового мира

При всей странности, эта концепция была экспериментально подтверждена бесчисленное количество раз в квантовых масштабах. Но при масштабировании до нашего, так сказать, более простого и понятного макроскопического мира, все меняется. Никто пока не видел звезду, планету или кота в суперпозиции или в состоянии квантовой запутанности. Но с тех пор, как квантовая теория была впервые сформулирована в начале 20 века, ученые задавались вопросом, где именно пересекаются микроскопический и макроскопический миры? Насколько большой может быть квантовая реальность и будет ли она когда-нибудь достаточно большой, чтобы ее самые странные аспекты можно было тесно увязать с живыми существами? В течение последних двух десятилетий появившаяся область квантовой биологии искала ответы на эти вопросы, предлагая и проводя эксперименты над живыми организмами, которые могли бы помочь нащупать пределы квантовой теории.

Эти эксперименты уже принесли интересные, но неубедительные результаты. В начале этого года, например, ученые показали, что процесс фотосинтеза — когда организмы производят пищу, используя свет — может включать некоторые квантовые эффекты. Навигация птиц или наше обоняние также говорят о том, что квантовые эффекты могут проявляться у живых существ самым необычным образом. Но это лишь самый кончик айсберга квантового мира. До сих пор никому не удавалось заставить целый живой организм — даже не одноклеточную бактерию — проявить квантовые эффекты, такие как запутанность или суперпозиция.

И вот, новая работа ученых Оксфордского университета заставляет некоторых удивленно поднять брови: в ней они пишут, что им удалось успешно запутать бактерий с фотонами — частицами света. Исследование, проведенное квантовым физиком Кьярой Марлетто и опубликованное в октябре в Journal of Physics Communications, представляет собой анализ эксперимента, проведенного в 2016 году Дэвидом Коулсом из Университета Шеффилда и его коллегами. В том эксперименте Коулс и компания разместили несколько сотен фотосинтезирующих зеленых серных бактерий между двумя зеркалами, постепенно сокращая промежуток между зеркалами до нескольких сотен нанометров — меньше, чем ширина человеческого волоса. Пропуская белый свет через зеркала, ученые надеялись, что фотосинтетические молекулы в бактериях образуют пары — или будут взаимодействовать — с пустотой, то есть бактерии будут непрерывно поглощать, испускать и заново абсорбировать прыгающие фотоны. Эксперимент был успешным. Около шести бактерий образовали пары по этому признаку.

Марлетто и ее коллеги утверждают, что бактерии не только образовали пару с полостью. В своем анализе они продемонстрировали, что энергетические сигнатуры, полученные в ходе эксперимента, могут быть совместимы с фотосинтезирующими системами бактерий, запутанных со светом в полости. По сути, кажется, что некоторые фотоны одновременно поражали и пропускали фотосинтетические молекулы внутри бактериях — это было отличительным признаком запутывания.

«Наши модели показывают, что это явление можно считать сигнатурой запутанности между светом и определенными степенями свободы внутри бактерий», говорит она.

По словам соавтора исследования Тристана Фарроу, который также из Оксфорда, впервые это явление было замечено в живом организме. «Это определенно ключ к доказательству того, что мы каким-то образом движемся в сторону идеи «бактерий Шрёдингера», так сказать», говорит он. И это намекает на другой потенциальный случай проявления квантовой биологии в естественной среде: зеленые серобактерии обитают в глубоком океане, где дефицит живительного света может стимулировать квантово-механические эволюционные адаптации для разгона и поддержания фотосинтеза.

У таких спорных заявлений есть, впрочем, множество подводных камней. Прежде всего, доказательство запутывания в таком эксперименте будет косвенным, зависящим от того, как наблюдатель решает интерпретировать свет, протекающий сквозь и вытекающий из ограниченных полостью бактерий. Марлетто и ее коллеги признают, что классическая модель, свободная от квантовых эффектов, также могла бы объяснить результаты этого эксперимента. Но, конечно, фотоны не являются классическими вовсе — они квантовые. И все же более реалистичная «полуклассическая» модель, использующая законы Ньютона для бактерий и квантовые законы для фотонов, не может воспроизвести результаты, полученные Коулсом и его коллегами в лаборатории. Это указывает на то, что квантовые эффекты проявляются как для света, так и для бактерий.

Что изучает квантовая биология

Микроскопические формы жизни порой имеют самые причудливые формы.

Другой подводный камень: энергии бактерий и фотона измерялись совместно, а не по отдельности. Это, по словам Саймона Грёблахера из Технологического университета Делфта в Нидерландах, который не принимал участия в исследовании, является некоторым ограничением. «Может показаться, что происходит что-то на квантовом уровне», говорит он. «Но… обычно, когда мы демонстрируем запутанность, мы измеряем две системы независимо», чтобы подтвердить, что любые квантовые корреляции между ними будут подлинными.

Несмотря на эти неопределенности, для многих экспертов квантово-биологический переход от теоретической мечты к реальности, которую можно пощупать, это не вопрос возможности — это вопрос времени. По отдельности и коллективно молекулы за пределами биологических систем уже проявили квантовые эффекты в лабораторных экспериментах, проведенных за десятки лет, поэтому поиск этих эффектов среди молекул внутри бактерий или вообще наших тел кажется не лишенным смысла. В организмах людей и других многоклеточных существ, впрочем, такие молекулярные квантовые эффекты было бы трудно заметить, но у крошечных бактерий — почему бы и нет? «Это приятное открытие, хоть и ожидаемое», говорит Грёблахер. «Но оно определенно будет сюрпризом, если продемонстрировать его на примере реальной биологической системы».

Несколько исследовательских групп, возглавляемых в том числе Грёблахером и Фарроу, надеются разработать эти идеи еще больше. Грёблахер разработал эксперимент, который мог бы поместить крошечное животное — тихоходку — в состояние суперпозиции. Это будет намного сложнее, чем запутывание бактерий со светом из-за сравнительно большого размера тихоходок. Фарроу рассматривает способы улучшить эксперимент с бактериями; в следующем году он и его коллеги надеются запутать двух бактерий вместе, не трогая свет.

«Речь идет о понимании природы реальности и о том, имеют ли квантовые эффекты роль в биологических функциях. Глубоко в корне вещей все является квантовым».

Может быть так, например, что «естественный отбор придумал способы для живых систем естественным образом использовать квантовые явления», отмечает Марлетто, приводя в пример вышеупомянутый фотосинтез серобактерий в глубоком море. Но для этого нужно начинать с малого. В ходе недавнего эксперимента был успешно запутан миллион атомов. Конечно, это мизер даже по сравнению с бактериями. Но если подход снизу-вверх сработает, однажды нас ждет запутанные на макроскопическом уровне существа, предметы и даже люди.

Как думаете, это возможно? Расскажите в нашем чате в Телеграме.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *