Что изучает коллоидная химия кратко

Коллоидная химия

Колло́идная хи́мия (др.-греч. κόλλα — клей) — наука о дисперсных системах и поверхностных явлениях и традиционное название физической химии дисперсных систем и поверхностных явлений, возникающих на границе раздела фаз. Изучает адгезию, адсорбцию, смачивание, коагуляцию, электрофорез. Разрабатывает технологии строительных материалов, бурения горных пород, зол-гель технологии. Играет фундаментальную роль в нанотехнологии.

Современная коллоидная химия — это наука на стыке химии, физики, биологии. Особое междисциплинарное положение коллоидной химии подчёркивается тем, что в англоязычной литературе часто используют название «коллоидная наука» (англ. colloid science ).

История коллоидной химии

Коллоидная химия как наука имеет небольшую историю, однако свойства коллоидных систем и коллоидно-химические процессы человек использовал с давних времён. Это, например, такие ремёсла, как получение красок, керамики, глазури, прядение льна, хлопка, шерсти, выделывание кож.

Начиная с XVIII века появляются описания отдельных исследований, позже вошедшие в соответствующие разделы коллоидной химии. К ним относят работы М. В. Ломоносова по кристаллизации, получению цветных стёкол с применением дисперсии металлов (1745—1755 гг.). В 1777 г. К. Шееле и Ф. Фонтана независимо друг от друга обнаружили явление адсорбции газов углём. В 1785 г. Т. Е. Ловиц обнаружил явление адсорбции из растворов. П. Лаплас в 1806 г. получил первые количественные отношения для капиллярного давления. В 1808 г. Ф. Ф. Рейсс, проводя опыты с элементом Вольта, открыл явления электрофорез и электроосмос.

Одни из наиболее ранних исследований коллоидных систем выполнены итальянцем Ф. Сельми в 1845 году. Он изучал системы, представляющие собой хлорид серебра, серу, берлинскую лазурь, распределенную в объёме воды. Эти системы, полученные Сельми, очень похожи на истинные растворы, однако Сельми полагал, что ни изученные им, ни другие подобные вещества не могут находиться в воде в виде таких же мелких частиц, как и образующиеся в истинных растворах, то есть в виде отдельных молекул или ионов.

Взгляды, близкие к Сельми, высказывал К. Нэгели, считавший, что в таких системах частицы серы, хлорида серебра и других веществ — более крупные агрегаты, чем отдельные молекулы. Для полимолекулярных агрегатов он ввел понятие «мицелла». Чтобы отличать системы, содержащие мицеллы, от растворов, где растворенное вещество находится в виде отдельных молекул, Нэгели назвал мицеллосодержащие системы «золями». Термины «мицелла», «золь» стали общепринятыми.

М. Фарадей в 1857 году исследовал системы, содержащие золото, распределенное в объёме воды, известные ещё алхимикам, получившим их восстановлением солей золота и давшим их им название aurum potabile (питьевое золото). Изучая оптические свойства золей золота, М. Фарадей пришёл к выводу, что золото в них содержится в виде очень маленьких частиц.

Основоположником коллоидной химии принято считать Т. Грэма, выполнившего в 60-х годах XIX века первые систематические исследования коллоидных систем (золей). Ему же принадлежит и введение термина «коллоид». Впоследствии коллоидная химия включила в себя результаты, полученные в других областях физики и химии, и в конце XIX — начале XX веков сформировалась в самостоятельный раздел химии.

На основе механической теории капиллярности, разработанной в начале XIX века Т. Юнгом и П. Лапласом, и термодинамики поверхностных явлений, созданной Дж. У. Гиббсом в 1878, были сформулированы основные направления исследования коллоидной химии: изучение процессов образования новой фазы в гомогенных системах, термодинамическая устойчивость коллоидных систем, количественное описание адсорбции на границе раздела фаз. Развитые в 1853 Г. Гельмгольцем представления о строении двойного электрического слоя позволили дать объяснение электрокинетическим и электрокапиллярным явлениям. Создание Дж. Рэлеем теории рассеяния света способствовало количественному изучению оптических свойств коллоидных систем. Исследование Ж. Перреном, Т. Сведбергом и Р. Зигмонди броуновского движения коллоидных частиц на основе теории, разработанной в 1905 А. Эйнштейном и М. Смолуховским, позволило доказать реальность существования молекул и правильность молекулярно-кинетических представлений. На основе предложенной в 1917 И. Ленгмюром кинетической теории адсорбции были разработаны методы исследования состояния молекул поверхностно-активных веществ (ПАВ) в мономолекулярных слоях. В 1928 П. А. Ребиндер открыл адсорбционное понижение прочности (эффект Ребиндера) и в 40—50-х годах на основе развития этого направления и исследования структурообразования в дисперсных системах создал физико-химическую механику. Физическая теория устойчивости коллоидных систем была разработана в 1937 Б. В. Дерягиным совместно с Л. Д. Ландау и независимо от них Э. Фервеем и Я. Овербеком (теория ДЛФО). Дерягиным же введено представление о механизме действия тонких слоёв жидкости расклинивающее давление.

Современное состояние

Основные направления современной коллоидной химии:

Поскольку дисперсное состояние материи универсально и объекты изучения коллоидной химии весьма разнообразны, коллоидная химия тесно связана с физикой, биологией, геологией, почвоведением, медициной и др.

Существует Институт коллоидной химии и химии воды им. А. В. Думанского НАНУ (Киев).

Источник

Коллоидная химия. Шпаргалка

Что изучает коллоидная химия кратко

Данное издание создано в помощь студентам вузов, которые хотят быстро подготовиться к экзаменам и сдать сессию без проблем. Пособие составлено с учетом Государственного образовательного стандарта.

Оглавление

Приведённый ознакомительный фрагмент книги Коллоидная химия. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.

1. Возникновение и основные этапы развития коллоидной химии. Предмет и объекты исследований коллоидной химии

Возникновение науки коллоидной химии связано с исследованиями английского химика Т. Грэма. После пионерских исследований М. Фарадея (1857 г.), когда впервые были получены устойчивые коллоидные растворы высокодисперсного золота, в 1861 г. Грэм изучал диффузию разных веществ в водных растворах и обнаружил, что некоторые из них (желатин, агар-агар и т. п.) диффундируют в воде намного медленнее, чем, например, соли и кислоты. Также эти вещества при пересыщении растворов не кристаллизовались, а формировали студнеобразную, клейкую массу. Эти вещества Т. Грэм назвал коллоидами (от греч. kolla — «клей», eidos — «вид»). Так появилось название науки — «коллоидная химия». Т. Грэм выдвинул гипотезу о существовании в природе двух противоположных классов химических веществ — кристаллоидов и коллоидов. Эта идея заинтересовала многих ученых, и во второй половине XIX в. началось бурное развитие коллоидной химии. В России в это время коллоидной химии также уделялось большое внимание, во многом под влиянием Д. И. Менделеева. Исследования температурной зависимости поверхностного натяжения органических жидкостей (1861 г.) привели Менделеева к открытию понятия критической температуры веществ. Менделеев высказал также идею о связи между поверхностным натяжением и другими свойствами вещества. В эти годы были открыты многие вещества с коллоидными свойствами, разработаны различные методы очистки и стабилизации коллоидов, созданы методы их исследования. По мере открытия новых коллоидов на смену гипотезе Т. Грэма в первой половине XX в. пришла концепция универсальности коллоидного (дисперсного) состояния вещества: «Коллоидное состояние не является обусловленным особенностями состава вещества. При определенных условиях каждое вещество может находиться в коллоидном состоянии». Эту концепцию сформулировал профессор Санкт-Петербургского горного института П. П. Веймарн в 1906–1910 гг. Он показал, что типичные коллоиды (например, желатин) можно выделить в кристаллическом виде и, напротив, из кристаллоидных веществ можно приготовить коллоидный раствор (например, поваренной соли в бензоле). Произошло смещение приоритетов коллоидной химии. Главным направлением стало изучение дисперсного (коллоидного) состояния веществ. Примерно к 1920-м гг. фундаментальные проблемы коллоидной химии условно разделили на три группы: состав, строение и свойства коллоидных частиц; взаимодействие частиц с дисперсной средой; контактные взаимодействия частиц друг с другом, приводящие к образованию коллоидных структур. В этот период были открыты основные законы коллоидной химии — закон броуновского движения и диффузии коллоидных частиц (А. Эйнштейн), гетерогенной природы коллоидных растворов (Р. Зигмонди), седиментационно-диффузионного равновесия дисперсий в поле силы тяжести (Ж. Перрен) и в центрифуге (Т. Сведберг), светорассеяния (Дж. Рэлей), коагуляции золей электролитами (Г. Шульце и В. Гарди). Появление во второй половине XX в. высокоразрешающих методов изучения строения веществ (ЯМР, электронной и атомно силовой микроскопии, компьютерного моделирования, фотон-корреляционной спектроскопии и др.) позволило перейти к систематическому исследованию строения и свойств коллоидных систем. Современное определение данной науки гласит: коллоидная химия — это учение о свойствах и превращениях веществ в дисперсном и ультрадисперсном состояниях и поверхностных явлениях в дисперсных системах. Объекты исследования коллоидной химии имеют высокоразвитую поверхность и представляют собой различные золи, суспензии, эмульсии, пены, поверхностные пленки, мембраны и пористые тела, наноструктурированные системы (нанотрубки, пленки Ленгмюра-Блоджетт, гибридные органо-неорганические композиционные материалы, нанокомпозиты).

Оглавление

Приведённый ознакомительный фрагмент книги Коллоидная химия. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.

Смотрите также

Что изучает коллоидная химия кратко

Философия. Конспекты + Шпаргалки. Две книги в одной!

Группа авторов, 2012

Что изучает коллоидная химия кратко

Гражданское право. Часть первая. Краткий курс

Коллектив авторов, 2016

Что изучает коллоидная химия кратко

Психология. Полный курс

Татьяна Петровна Ритерман, 2010

Что изучает коллоидная химия кратко

Статистика. Ответы на экзаменационные билеты

Ангелина Витальевна Яковлева, 2009

Что изучает коллоидная химия кратко

Уголовный процесс. Шпаргалка

Михаил Белоусов, 2009

Что изучает коллоидная химия кратко

Ценные бумаги. Ответы на экзаменационные билеты

Надежда Новикова, 2009

Что изучает коллоидная химия кратко

Бухгалтерское дело. Ответы на экзаменационные вопросы

Что изучает коллоидная химия кратко

Учебное пособие по органической химии. Часть 1. Алифатические соединения

Что изучает коллоидная химия кратко

Политология. Вопросы и ответы

Что изучает коллоидная химия кратко

Теория организации. Ответы на экзаменационные билеты

Сергей Викторович Загородников, 2009

Что изучает коллоидная химия кратко

Патентование изобретений в области высоких и нанотехнологий

Что изучает коллоидная химия кратко

Ответы на экзаменационные вопросы по арбитражному процессуальному праву

Галина Корнийчук, 2009

Что изучает коллоидная химия кратко

Аудит. Ответы на экзаменационные билеты

Светлана Юсупова, 2009

Что изучает коллоидная химия кратко

Экономический анализ деятельности предприятия. Ответы на экзаменационные вопросы

Источник

КОЛЛОИДНАЯ ХИМИЯ

В биол, и мед. исследованиях широко используются методы К. х.: диализ (см.) и особенно электродиализ, применяющиеся для очистки и изучения ферментов, гормонов, вирусов, токсинов, антибиотиков, антител и т. п.; ультрафильтрация (см.), используемая для тех же целей, а также для разделения и фракционирования сложных полидисперсных систем; коагуляция (см.), с помощью к-рой определяют состояние полидисперсных систем крови и других биол, жидкостей; ультрацентрифугирование (см.), широко используемое для получения физ.-хим. характеристик белков и других высокомолекулярных биологически активных соединений.

Для любой коллоидной системы, содержащейся в живом организме, важен потенциал и заряд ее частиц. Для определения величины электрокинетического потенциала частиц используют электрофорез (см.), а при изучении поведения биол, мембран и тканей живого организма по отношению к омывающим их р-рам исследуют явления электроосмоса (см.). Метод электрофореза широко применяется для фракционирования и изучения белков, в т. ч. белков плазмы крови, а также для диагностики многих заболеваний, в частности при энзимодиагностике различных патол, процессов (см. Ферменты). В практической медицине широко применяются разнообразные коллоидные лекарственные средства (см.). Область К. х., изучающая высокомолекулярные соединения, приобрела важное практическое значение, явившись теоретической основой для развития производства синтетических волокон, каучука, новых полимеров и пластмасс.

Со многими из высокомолекулярных веществ, находящихся в живых организмах в виде коллоидных р-ров или студней, связаны процессы технологии изготовления пищевых продуктов. Важное значение имеет К. х. для сельского хозяйства. Будучи самостоятельным разделом физ. химии, К. х. пользуется ее методами исследования, применяя их как для микрогетерогенных и многофазных, так и для гомогенных р-ров и студней высокомолекулярных веществ.

Термин «коллоидная химия» был введен в 1861 г. Грэмом (Th. Graham), который обнаружил, что вещества, образующие р-ры, похожие на клей, очень медленно в них диффундируют и не проходят через животные мембраны. Это дало ему повод назвать такие р-ры «коллоидными». Подобными же свойствами обладали и ранее изученные, гл. обр. Сельми (F. Selmi), так наз. псевдорастворы йодистого серебра, берлинской лазури, золота и др.; позже их стали называть лиофобными, а р-ры высокомолекулярных соединений — лиофильными коллоидами. В устаревших, но еще часто употребляемых терминах «лиофильный» и «лиофобный» отражаются наличие или отсутствие сродства между частицами и жидкостью.

Почти одновременно с Грэмом коллоидные системы изучал И. Г. Борщев, который уже в 1869 г. придерживался того мнения, что малая скорость диффузии коллоидных частиц объясняется их значительными размерами, причем вопреки господствующим в то время взглядам, он считал, что коллоидные частицы могут иметь кристаллическое строение.

В 19 и в начале 20 в. были проведены фундаментальные исследования, имевшие большое значение для развития К. х. Лаплас (P. Laplace) разработал теорию капиллярности, Гиббс (J. Gibbs) — теорию поверхностных явлений и правило фаз, Рэлей (J. Rayleigh) — теорию рассеяния света и др., Эйнштейн и Смолуховский (A. Einstein, М. Smoluchowski) — теорию броуновского движения. Перрен (J. Perrin) наблюдал движение частиц в монодисперсных суспензиях, а Т. Сведберг — движение частиц коллоидных систем в ультрамикроскопе. Было установлено, что коллоидные системы содержат частицы более крупные, чем молекулы обычных газов и жидкостей. Оствальдом (W. Ostwald) и П. П. Веймарном было введено понятие степени дисперсности коллоидных систем. Оствальду принадлежит заслуга издания первых в мире журналов, печатавших статьи ученых разных стран об исследованиях в области К. х.

В России с 1903 г. начал свои исследования в области К. х. А. В. Думанский (1880—1966), который в 1912 г. прочитал первый курс К. х. студентам, а в 1913 г. организовал научную лабораторию К. х., преобразованную в 1932 г. во Всесоюзный ин-т коллоидной химии. В 1935 г. под его редакцией начал выходить «Коллоидный журнал». А. В. Думанский ввел в К. х. многие физ. методы исследования. Им была высказана идея создания мощной центрифуги для измерения величины коллоидных частиц (заслуга ее практического применения принадлежит швед, ученому Сведбергу, сконструировавшему в 1922 г. ультрацентрифугу для анализа высокодисперсных коллоидных систем по скорости осаждения их частиц в центробежном поле и седиментационному равновесию).

Большое значение для развития К. х. имели работы амер. ученого Ленгмюра (I. Langmuir) по строению мономолекулярных слоев и теории адсорбции. Н. П. Песков разработал теорию устойчивости коллоидных систем, отличающихся высокой поверхностной активностью. Дальнейшее развитие высказанных им положений привело к представлению о мицелле. Как показал Н. П. Песков, коллоидная система обладает двумя видами устойчивости: кинетической, т. е. способностью частиц дисперсной фазы сохранять состояние равномерного распределения в дисперсионной среде, и агрегативной, характеризующей их сопротивляемость силам агрегации.

П. А. Ребиндер, А. Н. Фрумкип и их сотр. изучили влияние поверхностных слоев на свойства коллоидных и других дисперсных систем; А. И. Рабинович, В. А. Каргин, Б. В. Дерягин и др. создали теории коагуляции золей (см.).

С 20-х гг. К. х. введена как самостоятельный курс в хим. вузах или в виде специальных глав курса физ. химии — в мед., с.-х., пищевых, хим.-технол. и других вузах СССР.

Научные исследования по К. х. проводятся в специальных лабораториях и ин-тах, в СССР — в Физическом ин-те АН СССР, Ин-те физической химии АН СССР, Ин-те коллоидной химии и химии воды АН УССР и в академиях наук союзных республик, отраслевых НИИ и на кафедрах К. х. и физической К. х. вузов и ун-тов.

Библиография: Воюцкий С. С. Курс коллоидной химии, М., 1975; Думайский А. В. Развитие отечественной коллоидной химии, Киев, 1952; Пасынский А. Г. Коллоидная химия, М., 1968, библиогр.; Писаренко А. П., Поспелова К. А. и Яковлев А. Г. Курс коллоидной химии, М., 1969; Развитие физической химии в СССР, под ред. Я. И. Герасимова, с. 239, М., 1967, библиогр.; Тюдзе Р. и Каваи Т. Физическая химия полимеров, пер. с японск., М., 1977; Фридрихсберг Д. А. Курс коллоидной химии, Л., 1974.

Источник

Предмет и задачи коллоидной химии. Представление о коллоидном состоянии вещества. Этапы развития коллоидной химии. Классификация дисперсных систем.

Ранее коллоидная химия считалась разделом физической химии, а теперь является самостоятельной дисциплиной.

Предметом изучения коллоидной химии являются гетерогенные смеси веществ (дисперсные системы), их свойства, процессы, протекающие в этих системах.

Задачи коллоидной химии – прогнозирование направления и изучение осо-бенностей протекания физико-химических процессов в дисперсных системах.

Коллоидная химия использует особые методы исследования, как электронная микроскопия, ультрамикроскопия, ультрацентрифугирование, электрофорез, нефелометрия и др.

Для более отчётливого представления роли коллоидной химии кратко остановимся на истории развития этой науки.

Коллоидные системы начали изучать в середине 19 века. В 1845 г. итальян-ский ученый Франческо Сельми установил, что некоторые нерастворимые в воде вещества (например, AgCl, S, берлинская лазурь), в определенных условиях растворяются, образуют однородные растворы, выпадение осадка не сопровож-дается изменением температуры, т.е. аномальное поведение вещества. Он назвал их псевдорастворами. Позднее они по предложению К.Негели получили название «золь». В 1857 году М.Фарадей открыл отличительный признак псевдорастворов – рассеяние света.

Основоположником коллоидной химии считается английский ученый Томас Грэм. Он изучил растворы Сельми и установил (1861 год), что они отличаются от хорошо растворимых в воде соединений. Эти соединения в растворе образуют не кристаллические, а рыхлые аморфные осадки, диффундируют медленно, не проходят через полупроницаемые мембраны с отверстиями молекулярного раз-мера. Это указывало на большой размер частиц таких соединений. Растворы и вещества, которые их образуют, Грэм назвал коллоидами (от гр. kolla – клей + eidos вид), т.к. он проводил эксперименты желатиной, растворы которой используют в качестве столярного клея и считал, что клей является одним из представителей этих соединений. Основные отличительные положения «Коллоидной химии» Т.Грэма заключаются в следующем:

1) свойства коллоидных систем в сильной степени зависят от размеров частиц дисперсной фазы;

2) все коллоидные системы способны интенсивно рассеивать свет;

3) диффузия дисперсных частиц в коллоидных системах выражена в минимальной степени;

4) коллоидные системы способны к диализу;

5) коллоидные системы являются термодинамически неустойчивыми.

Одним из недостатков высказанных концепций Т.Грэма было разделение им всех веществ на два мира. Грэм считал, что коллоиды по своей природе отличаются от обычных веществ и все вещества разделил на две группы – кристаллоиды (обычные вещества, кристаллизующиеся при насыщении раствора) и коллоиды (клееподобные вещества).

Позже русский ботаник И.Г.Борщов (1869 год) установил зависимость ско-рости диффузии коллоидных частиц от их размера и пришел к выводу, что коллоиды имеют кристаллическое строение.

В начале 20 века П.П.Веймарн (1907–1912 г.г.) изучил около 200 веществ и по-казал, что одно и то же вещество может в одних условиях обладать свойствами кристаллоида, а в других – коллоида. Так, канифоль в спирте образует истинный раствор, а в воде – коллоидный раствор, или при растворении NaCl в воде обра-зуется истинный раствор, а в бензоле – коллоидный. Таким образом, установле-но, что правильнее говорить не о коллоидном веществе, а о коллоидном состоянии вещества.

В 1903 году чешский ученый Р.Зигмонди и немецкий ученый Г.Зидентопф сконструировали ультрамикроскоп, с помощью которого можно проводить прямые наблюдения за частицами коллоидного раствора.

Позднее (1907 год) Ф.Ф.Рэлей, М.Смолуховский, А.Эйнштейн установили, что вещество коллоидных растворов находится не в виде отдельных молекул или ионов, а в виде скоплений – агрегатов молекул, названных мицеллами (от лат. micella крошка, крупинка). А.Эйнштейн и М.Смолуховский развили молекулярно-статистическую теорию броуновского движения коллоидных частиц и теорию флуктуаций. Ж.Б.Перрен, Т.Сведберг провели проверку данной теории, определив независимыми путями число Авогадро. В.Оствальдом в начале 20 века достаточно полно было изучено влияние агрегативного состояния и дисперсности на свойства коллоидных объектов.

П.П.Веймарн детально изучал конденсационные методы образования лиозолей. Теорией образования аморфных и кристаллических частиц при синтезе коллоидных систем занимался В.А.Каргин. Ф.Ф.Рэлей, а позднее Л.И.Мандельштам, П.Дебай разработали основы теории светорассеяния на неоднородностях среды и успешно применяли эти концепции для анализа коллоидных систем. В 1908 г. Г.Фрейндлих сформулировал основные положения адсорбционной теории коагуляции. Б.В.Дерягин, А.Д.Ландау, Е.Фервей, Т.Овербек разрабатывали (1939-1943 г.г.) и развивали физическую теорию коагуляции. Г.Кройтом предложена теория коагуляции ВМС.

Следует отметить, что имеются вещества с очень большими молекулами – высокомолекулярные соединения (белки, целлюлоза, каучук и др. полимеры). Молекулы таких соединений могут превышать размеры коллоидных частиц, их растворы могут обладать многими свойствами коллоидных растворов, но не являются скоплениями молекул. Их нельзя отнести к типичным коллоидным системам. Чтобы различить, их называют растворами ВМС. Растворы ВМС также являются объектами изучения коллоидной химии.

Коллоидные системы и растворы ВМС широко распространены в природе. Белки, кровь, лимфа, углеводы, пектины находятся в коллоидном состоянии. Многие отрасли производства (пищевая, текстильная, резиновая, кожевенная, лакокрасочная, керамическая промышленности, технология искусственного волокна, пластмасс, смазочных материалов) связаны с коллоидными системами. Производство строительных материалов (цемент, бетон, вяжущие растворы) основано на знании свойств коллоидов. Угольная, торфяная, горнорудная и нефтяная промышленность имеют дело с дисперсными материалами (пылью, суспензиями, пенами). Особое значение коллоидная химия приобретает в про-цессах обогащения полезных ископаемых, дробления, флотации и мокрого обо-гащения руд. Фото- и кинематографические процессы также связаны с приме-нением коллоидно-дисперсных систем.

К объектам коллоидной химии следует отнести все многообразие форм рас-тительного и животного мира, в частности, типичными коллоидными образова-ниями являются мышечные и нервные клетки, клеточные мембраны, волокна, гены, вирусы, протоплазма, кровь. Поэтому ученый-коллоидник И.И.Жуков констатировал, что «человек по существу – ходячий коллоид». В свете этого, технологию лекарственных средств (мазей, эмульсий, суспензий, аэрозолей, порошков), действие различных лекарств на организм невозможно представить без знаний коллоидной химии.

Дисперсная система. Мера дисперсности.

Дисперсными системами называются неоднородные (гетерогенные) смеси веществ, в которых одно тонкоизмельченное вещество равномерно распределено в однородной среде (массе) другого вещества.

Дисперсные системы состоят из дисперсной фазы и дисперсионной среды. Дисперсная фаза (ДФ) – совокупность мелких частиц вещества, распределенных (диспергированных) в однородной среде другого вещества.

Дисперсионная среда – это однородная среда в виде молекул или ионов, в которой равномерно распределяются мелкие частицы другого вещества.

Дисперсная система, в отличие от гомогенных (истинных) растворов, характеризуется гетерогенностью и дисперсностью.

Гетерогенность – это многофазность системы, т.е наличие границ раздела фаз, что обусловлено нерастворимостью вещества одной фазы в другой. Так как только между такими веществами могут существовать физические поверхности раздела.

Классификация дисперсных систем.

Дисперсные системы классифицируют по размерам частиц, по агрегатному состоянию веществ, по интенсивности взаимодействия фаз системы. Они разли-чаются также по скорости диффузии частиц, по способности проходить через мембраны и фильтры, по рассеиванию света.

Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды (по В.Оствальду)

Учитывая, что вещество может находиться в трех агрегатных состояниях, возможны 8 комбинаций дисперсионной среды и ДФ:

ДСДФУсловное обозначение системыТип системыПримеры
ГазГаз Жидкость Твердое телоГ–Г Г–Ж Г–ТАэрозолиНет (гомогенные системы). Туман, облака, аэрозоли жидких лекарств. Дым, пыль, порошки, аэрозоли твердых лекарств.
ЖидкостьГаз Жидкость Твердое телоЖ–Г Ж–Ж Ж–ТЛиозолиПены, крем, газированная вода Эмульсии, нефть, молоко, сливки. Суспензии, зубные пасты, тушь, глины.
Твердое телоГаз Жидкость Твердое телоТ–Г Т–Ж Т–ТСолидозолиТвердые пены (пемза, хлеб, резина, лава, пенобетон, пенопласт) Жемчуг, некоторые минеральные гели, опал, желе, желатин, агар-агар Сплавы, стекла, минералы (рубин)

Для отличия коллоидных растворов от других дисперсных систем, их называют золями (от лат. solutio раствор). Поэтому системы, в которых дисперсионной средой является газ называют аэрозолями, в случае жидкости – лиозолями, в случае твердой дисперсионной среды – солидозолями. В зависимости от природы жидкой дисперсионной среды лиозоли делят на гидрозоли, алказоли, бензозоли, этерозоли (органозоли).

Классификация по взаимодействию дисперсионной среды и дисперсной фазы (по Г.Фрейндлиху)

Такая классификация пригодна только для систем с жидкой дисперсионной средой.

Если поверхность частиц и молекула растворителя имеют одинаковую по-лярность (т.е. сродство), то они будут взаимодействовать друг с другом. Поэто-му вокруг коллоидных частиц образуются толстые многослойные сольватные оболочки. Фрейндлих таких систем назвал лиофильными (от гр. lyo жидкость + phileo люблю). Примерами таких систем являются растворы белка, крахмала, агар-агара, гуммиарабика, высококонцентрированные эмульсии, эмульсолы. В случае, когда частицы и молекулы растворителя разнополярны, то между коллоидными частицами и дисперсионной средой отсутствует взаимодействие, значит отсутствуют и сольватные оболочки, либо образуются тонкие сольватные оболочки. Такие системы были названы лиофобными коллоидными растворами (от гр.lyo жидкость + phobos боязнь). В случае, когда дисперсионной средой является вода, эти системы называются соответственно, гидрофильными и гидрофобными.

К лиофобным системам относятся типичные коллоидные системы, образо-ванные трудно растворимыми в дисперсионной среде веществами (слабые осно-вания, некоторые соли, металлы, аэрозоли, пены).

Лиофильные системы не обладают всеми типичными коллигативными свойствами, они растворяются самопроизвольно, термодинамически устойчивы, образуют гомогенные растворы. Поэтому лиофильных систем в настоящее время выделяют как особые группы дисперсных систем – растворы высокомо-лекулярных веществ (белков, полисахаридов, нуклеиновых кислот) и мицелярные растворы ПАВ.

Дата добавления: 2015-11-12 ; просмотров: 7658 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *