Что изучает генная и клеточная инженерия

Клеточная и генная инженерия, клонирование

Содержание:

Современные направления биотехнологии предполагают внедрение в клетку, в процессы метаболизма, перестройку генов. За использованием подобных манипуляций стоит желание человека добиться создания необходимых продуктов питания и химических веществ. Биотехнология – наука затратная, которая требует не только финансовых вложений, но и фундаментальных знаний в области биологии.

Клеточная инженерия

Клеточная инженерия предполагает создание клеток нового типа путем их культивирования, гибридизации и реконструкции. Клетки видоизменяют, вводя в них новые хромосомы, ядра, клеточные органоиды.

Направления деятельности клеточной инженерии

Что изучает генная и клеточная инженерия

Клеточная инженерия научилась культивировать (выращивать) изолированные клетки и ткани на специально подобранной питательной среде в контролируемых условиях (влажность, температура, освещенность). Из одной клетки таким путем получают полноценное растение или клеточную массу (каллус). Такие эксперименты проводят благодаря способности растительной клетки к регенерации и чаще всего применяют для с/х растений и лекарственных трав.

Селекция и клеточная инженерия относятся к неразделимым понятиям. В селекции применяют новые, не стандартные методики:

Такие способы позволяют экспериментировать и создавать новые гибриды и сорта, которые невозможно получить традиционными путями, используя только методы селекции.

Генетическая инженерия

Генетическая инженерия относится к разделу молекулярной биологии, которая предполагает внедрение «скальпеля» в геном клетки и его перестройку, создание организмов с новой генетической программой по заранее продуманному плану. Основные направления деятельности генной инженерии – это перестройка генотипов и пересадка генов.

Научные работы проводятся с молекулами ДНК, которые внедряют в новую клетку. ДНК начинает размножаться и «отслеживать» синтез нужных человеку соединений по заданной программе.

Генная инженерия, соединив достижения химии и генетики, помогает:

Внедрение гена из одного организма в другой требует выполнение цепочки последовательных действий:

Что изучает генная и клеточная инженерия

Выращены трансгенные животные, содержащие геном с не родными генами. Уже получены трансгенные мыши, кролики, свиньи, овцы. Они содержат ДНК, в которой работают чужеродные гены разного происхождения. Животные и растения в качестве наследственного материала получают гены бактерий, дрожжей, млекопитающих, человека.

Важно! Трансгенные организмы устойчивы к факторам внешней среды, вредителям и болезням, наделены теми чертами, которые запрограммировал в них человек.

Клонирование

Слово «клонирование» применялось при бесполом размножении организмов. Сейчас этот термин приобрел иную направленность. Это создание копий генов и клеток в лабораторных условиях. При бесполом размножении полученные экземпляры живых организмов являются точной копией исходного материала. Но это возможно не всегда: рожденные «в пробирке» искусственные эмбрионы подвержены мутациям. Это значит, что у них развивается наследственная изменчивость.

К сведению: Иногда клонирование путают с искусственным оплодотворением, когда оплодотворенную яйцеклетку вводят в матку будущей матери (родной или суррогатной). Это метод решения проблемы бесплодия, но он не относится к клонированию.

Источник

Методы клеточной инженерии

Клеточная инженерия — на чем основана

Клеточная инженерия – это совокупность технологий, приемов и методов конструирования клеток нового типа.

В рамках направления выполняют реконструкцию полноценной жизнеспособной клетки из нескольких фрагментов различных клеток, объединение генетического материала двух и более клеток, принадлежащих разным царствам и видам, в одной целой клетке.

В основе конструирования могут лежать такие принципы, как:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В отличие от генной инженерии, предметом исследования клеточной является не целый живой организм, а только клетки и состоящие из них ткани. Это представляется особенно важным в отношении человека и животных, когда получение отдаленных гибридов является не просто сомнительным, но и опасным, запрещенным.

Какими исследованиями занимается клеточная инженерия

Этот раздел науки является достаточно молодым и одним из наиболее перспективных, так как открывает биологам множество возможностей. В клеточной инженерии растений на данном этапе можно выделить три основных направления:

Задействована клеточная инженерия и в решении задач здравоохранения. Исследователи работают над регенерацией тканей, получением живых органов. Изучают возможность создания полноценно работающих участков кровеносной системы, выпуска способных бесследно исчезать хирургических нитей.

Методы и условия культивирования изолированных тканей и клеток растений

Успешное культивирование возможно при соблюдении четырех важнейших условий:

Всего из одной клетки можно получить клеточную массу, которая в биологии обозначается понятием «каллус», или целое растение. Для этого ученые используют такие методы, как:

Применяя такие методы, биологи получают возможность экспериментировать с новыми сортами, получать гибриды, недоступные в рамках традиционной селекции.

Области практического применения достижений клеточной инженерии

В области растениеводства достигнуты высокие результаты по выведению максимально продуктивных и практичных сортов. Из их описания видно, что растения устойчивы к:

Благодаря достижениям ученых, занимающихся клеточной инженерией, сельскохозяйственные предприятия осваивают такой способ размножения, как клонирование культур, выращивание здорового, не подверженного негативным изменениям генома урожая.

В сфере медицины работа идет над созданием тканей, которые смогут не просто устранить механические и физические погрешности, а полностью восстановят метаболические функции. При этом выращивание функционального материала производится вне человеческого организма.

Применение достижений клеточной инженерии на практике позволит производить замену не только сосудов, отдельных тканей, но и целых органов, к примеру, печени или селезенки. Значение такой возможности сложно переоценить, зная, насколько современный человек подвержен травмам и болезням.

Источник

Биотехнология, генетическая и клеточная инженерия

Что изучает генная и клеточная инженерия Что изучает генная и клеточная инженерия Что изучает генная и клеточная инженерия Что изучает генная и клеточная инженерия

Что изучает генная и клеточная инженерия

Биотехнология — это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее Обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.). Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других денных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны[4].

Генетическая инженерия — один из важнейших методов биотехнологии. Она предполагает целенаправленное искусственное создание определенных комбинаций генетического материала, способных нормально функционировать в клетке, т. е. размножаться и контролировать синтез конечных продуктов. Можно выделить несколько разновидностей метода генетической инженерии в зависимости от уровня и особенностей его использования.

Генетическая инженерия используется в основном на прокариотах и микроорганизмах, хотя в последнее время начала применяться и на высших эукариотах (например, на растениях). Этот метод включает выделение из клеток отдельных генов или синтез генов вне клеток (например, на основе матричной РНК, синтезированной данным геном), направленную перестройку, копирование и размножение выделенных или синтезированных генов (клонирование генов), а также их перенос и включение в подлежащий изменению геном. Таким путем можно добиться включения в клетки бактерий «чужих» генов и синтеза бактериями важных для человека соединений. Благодаря этому в геном кишечной палочки удалось ввести ген синтеза инсулина из генома человека. Инсулин, синтезированный бактериями, используется для лечения больных сахарным диабетом.

Что изучает генная и клеточная инженерия

Развитие генетической инженерии стало возможным благодаря открытию двух ферментов — рестриктаз, разрезающих молекулу ДНК в строго определенных участках, и лигаз, сшивающих кусочки различных молекул ДНК друг с другом. Кроме того, в основе генетической инженерии лежит открытие векторов, которые представляют собой короткие, самостоятельно размножающиеся в клетках бактерий кольцевые молекулы ДНК. С помощью рестриктаз и лигаз в векторы и встраивают необходимый ген, добиваясь впоследствии его включения в геном клетки-хозяина.

Клеточная инженерия — это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Она базируется на использовании методов культуры клеток и тканей. Выделяются два направления клеточной инженерии: 1) использование клеток, переведенных в культуру, для синтеза различных полезных для человека соединений; 2) применение культивируемых клеток для получения из них растений-регенерантов.

Растительные клетки в культуре — это важный источник ценнейших природных веществ, так как они сохраняют способность синтезировать свойственные им вещества: алкалоиды, эфирные масла, смолы, биологически активные соединения. Так, переведенные в культуру клетки женьшеня продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем, в культуре с клетками и их геномами можно проводить любые манипуляции. Используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию (в том числе и отдаленную) гораздо легче и проще, чем на уровне целостного организма. Кроме этого, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.

Путем гибридизации лимфоцитов (клеток, синтезирующих антитела, но неохотно и недолго растущих в культуре) с опухолевыми клетками, обладающими потенциальным бессмертием и способными к неограниченному росту в искусственной среде, решена одна из важнейших задач биотехнологии на современном этапе — получены клетки гибридомы, способные к бесконечному синтезу высокоспецифических антител определенного типа.

Таким образом, клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса, гибридизации и, более того, комбинировать отдельные фрагменты разных клеток (ядра, митохондрии, пластиды, цитоплазму, хромосомы и т. д.), клетки различных видов, относящиеся к разным родам, семействам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Клеточная инженерия широко используется в селекции растений. Выведены гибриды томата и картофеля, яблони и вишни. Регенерированные из таких клеток растения с измененной наследственностью позволяют синтезировать новые формы, сорта, обладающие полезными свойствами и устойчивые к неблагоприятным условиям среды и болезням. Этот метод широко используется и для «спасения» ценных сортов, пораженных вирусными болезнями. Из их ростков в культуре выделяют несколько верхушечных клеток, еще не пораженных вирусом, и добиваются регенерации из них здоровых растений сначала в пробирке, а затем пересаживают в почву и размножают.

Заключение

Для того чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача — она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии хорошие перспективы. При появлении все новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем — непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.

Список литературы

1. Колесников С.И. Экология. – Ростов-на-Дону: Феникс, 2003. – 384с.

2. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.– М.: Айрис-пресс, 2005. 512с.

3. Петров Б.Ю. Общая биология. – СПб.: Химия, 1999. – 420с

Источник

Селекция. Биотехнология.

Селекция

Селекция — отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.

Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.

Основные методы селекции

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим. Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами. В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
ПоказателиЕстественный отборИскусственный отбор
Исходный материал для отбораИндивидуальные признаки организмовИндивидуальные признаки организмов
Отбирающий факторУсловия среды (живая и неживая природа)Человек
Путь благоприятных измененийОстаются, накапливаются, передаются по наследствуОтбираются, становятся производительными
Путь неблагоприятных измененийУничтожаются в борьбе за существаниеОтбираются, бракуются, уничтожаются
Направленность действияОтбор признаков, полезных особи, популяции, видуОтбор признаков, полезных человеку
Результат отбораНовые видыНовые сорта растений, породы животных, штаммы микроорганизмов
Формы отбораДвижущий, стабилизирующий, дизруптивныйМассовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства.
Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой — ведёт к снижению жизнеспособности, продуктивности и вырождению. Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдалённая) гибридизация — скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы с ослом, лошак — гибрид коня с ослицей). Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия

Полиплоидия — увеличение числа хромосомных наборов.

Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Индуцированный мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Клеточная и генная инженерия

Биотехнология — методы и приёмы получения полезных для человека продуктов и явлений с помощью живых организмов (бактерий, дрожжей и др.). Биотехнология открывает новые возможности для селекции. Её основные направления: микробиологический синтез, генная и клеточная инженерия.
Микробиологический синтез — использование микроорганизмов для получения белков, ферментов, органических кислот, лекарственных препаратов и других веществ. Благодаря селекции удалось вывести микроорганизмы, которые вырабатывают нужные человеку вещества в количествах, в десятки, сотни и тысячи раз превышающих потребности самих микроорганизмов. С помощью микроорганизмов получают лизин (аминокислоту, не образующуюся в организме животных; её добавляют в растительную пищу), органические кислоты (уксусную, лимонную, молочную и др.), витамины, антибиотики и т. д.
Клеточная инженерия — выращивание клеток вне организма на специальных питательных средах, где они растут и размножаются, образуя культуру ткани. Из клеток животных нельзя вырастить организм, а из растительных клеток можно. Так получают и размножают ценные сорта растений. Клеточная инженерия позволяет проводить гибридизацию (слияние) как половых, так и соматических клеток. Гибридизация половых клеток позволяет проводить оплодотворение «в пробирке» и имплантацию оплодотворённой яйцеклетки в материнский организм. Гибридизация соматических клеток делает возможным создание новых сортов растений, обладающих полезными признаками и устойчивых к неблагоприятным факторам внешней среды.
Генная инженерия — искусственная перестройка генома. Позволяет встраивать в геном организма одного вида гены другого вида. Так, введя в генотип кишечной палочки соответствующий ген человека, получают гормон инсулин. В настоящее время человечество вступило в эпоху конструирования генотипов клеток.

Селекция растений, животных и микроорганизмов

Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.
Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И. Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.
В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия.
Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин. На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны.
Многие сорта культурных растений являются полиплоидными. Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д. Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).
К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.

Селекция животных

Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией). Почти все домашние животные относятся к высшим позвоночным животным — птицам и млекопитающим.
В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация.
Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно. В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного. Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п. Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье). Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).
Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов. Но благодаря проявлению гетерозиса широко используется человеком. Среди достижений по отдалённой гибридизации животных следует отметить мула — гибрида кобылы с ослом, бестера — гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.

Селекция микроорганизмов

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *