Что изобрел галилео галилей в 1609
Галилео Галилей представил первый телескоп
Итальянский ученый Галилео Галилей, 25 августа 1609 года представил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Он представлял собой конструкцию, состоявшую из нескольких линз, заключённых в трубу из свинца и давал приблизительно трехкратное увеличение.
Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза. Отметим, что термин телескоп ввел в науку именно Галилей. Ряд телескопических открытий Галилея способствовали утверждению гелиоцентрической системы мира, которую Галилей активно пропагандировал, и опровержению взглядов геоцентристов Аристотеля и Птолемея.
Все это опровергало учение Аристотеля о противоположности «земного» и «небесного»: Земля стала телом принципиально той же природы, что и небесные светила, а это, в свою очередь, служило косвенным доводом в пользу системы Коперника: если другие планеты движутся, то естественно предположить, что движется и Земля. Галилей обнаружил также либрацию Луны и довольно точно оценил высоту лунных гор.
Галилей предложил использовать наблюдения затмений спутников Юпитера для решения важнейшей проблемы определения долготы на море. Сам он не смог разработать реализацию подобного подхода, хотя работал над ней до конца жизни.
Галилей открыл также солнечные пятна. Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес. По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца. Галилей установил, что Венера меняет фазы.
Галилей отметил также странные «придатки» у Сатурна, но открытию кольца помешали слабость телескопа и поворот кольца, скрывший его от земного наблюдателя. Полвека спустя кольцо Сатурна открыл и описал Гюйгенс, в распоряжении которого был 92-кратный телескоп.
Историки науки обнаружили, что 28 декабря 1612 года Галилей наблюдал еще не открытую тогда планету Нептун и зарисовал ее положение среди звезд, а 29 января 1613 года наблюдал ее же в соединении с Юпитером. Однако Галилей не опознал Нептун как планету.
6 Изобретения Галилео Галилея и другие работы
Содержание:
В Изобретения Галилео Галилея они означали революцию в научной дисциплине. Фактически, его способ восприятия реальности предполагал изменение эпистемы XVI и XVII веков. Его вклад и открытия были настолько важны, что стали плодом споров и дискуссий.
Галилео Галилей (1564-1642) был итальянским физиком, астрономом, философом, инженером и математиком, который оказал большое влияние на научную революцию. Кроме того, он не только преуспел в науке, но и проявил заметный интерес к миру искусства. Некоторые авторы считают его отцом науки и отцом современной физики.
Артефакты и улучшения Галилео Галилея
Телескоп
В 1609 году до Галилея дошли слухи о создании телескопа, который позволял наблюдать объекты, находящиеся на больших расстояниях. Он был построен голландцем Гансом Липперши и позволял наблюдать за некоторыми звездами, которые не были заметны невооруженным глазом.
Благодаря этому описанию Галилей решил построить свою собственную версию телескопа. В отличие от телескопа Липперши, телескоп Галилео увеличивал изображение до шести раз и не деформировал объекты при увеличении.
Кроме того, телескоп Галилея был единственным в то время телескопом, который давал прямое изображение. Это было достигнуто за счет использования расходящейся линзы в глазном пространстве. С помощью этого изобретения астроному удалось освободиться от финансовых долгов, поскольку его артефакт был приобретен Венецианской республикой.
Термометр
В 1593 году Галилей построил термометр, который отличался от предыдущих, поскольку позволял рассчитывать колебания температуры по шкалам. Объект представлял собой емкость, наполненную кусками теста, которые двигались в зависимости от температуры.
Каждый из этих пакетов был маркирован определенной степенью, и вода позволяла пакетам опускаться или подниматься в зависимости от температуры. В настоящее время существуют более сложные термометры, которые рассчитывают температуру без использования таких сложных механизмов, однако это возможно благодаря усовершенствованиям от Galileo.
Биланцетта
Биланцетта была своего рода ведьмой, созданной ученым в 1597 году. Она считается первым коммерческим инструментом, созданным астрономом, поскольку многие люди приобрели ее в то время. Некоторые торговцы использовали его для расчета обменных курсов, а военные использовали его для измерения загрузки орудия.
В общих чертах инструмент состоял из двух линейок, которые перемещались по части, имевшей полукруглую форму. Сегодня этот инструмент все еще используется людьми для ориентации, хотя с момента своего появления он претерпел несколько модификаций.
Микрометр
Микрометр был устройством, предназначенным для точного расчета расстояния между каждым спутником от Земли.
По словам Джованни Альфонсо Борелли (1608-1679), микрометр состоял из линейки с двадцатью равными делениями. Одна из характеристик этого изобретения состоит в том, что его можно было поместить в телескоп и иметь возможность скользить через трубку последнего.
Целатон
Целатон был инструментом, созданным Галилеем для наблюдения за лунами Юпитера. Устройство позволяло рассчитать длину с моря, также оно состояло из объекта, который мог быть встроен в телескоп, и имел форму корпуса.
Одна из особенностей этого изобретения заключается в том, что оно было задумано для использования на палубе судна, находящегося в постоянном движении.
Побег Галилея
Он называется «Побег из Галилея» по конструкции изобретателя, состоящей из маятниковых часов. Их разработка датируется 1637 годом, и они считаются первой иллюстрацией маятниковых часов. Этот тип механизма также известен как часы со спусковым механизмом, что и дало название конструкции.
К тому времени астроном был очень стар и ослеп. По этой причине рисунок был сделан его сыном по описаниям его отца. Сын Галилея начал строительство объекта, однако оба умерли до того, как проект удалось завершить.
Законы, изобретенные Галилео Галилеем
Галилео Галилей не только проектировал и создавал новые артефакты; Он также отличился тем, что открыл ряд законов, которые позже послужили руководством для выдающихся физиков, таких как Исаак Ньютон (1643-1727). Наиболее важные из них перечислены ниже:
Закон инерции
Этот закон гласит, что каждый движущийся объект имеет тенденцию продолжать движение по прямой, если только на него не влияет другая сила, которая отклоняет его от траектории. Закон инерции был использован Исааком Ньютоном, чтобы позже установить руководящие принципы своего первого закона.
Закон свободного падения
Галилей считал, что в пространстве, свободном от воздуха, два объекта в свободном падении могут преодолевать равные расстояния за один и тот же период времени независимо от веса каждого из них. Это утверждение было весьма спорным для того времени, поскольку противоречило древним аристотелевским принципам свободного падения.
Чтобы проверить свою теорию, Галилей решил поэкспериментировать со свинцовым шаром, который он несколько раз уронил на наклонную плоскость, проверяя разную высоту и наклон. С помощью этого эксперимента астроном смог подтвердить, что квадрат времен пропорционален расстоянию, которое проходит сфера.
Закон изохронии маятников
Принцип маятника был открыт Галилеем, который понял, что период колебаний маятника не зависит от амплитуды (то есть максимального расстояния, на которое маятник может отойти от уравновешенного положения).
Напротив, период колебаний зависит от длины пряжи. Позже был разработан маятник Фуко, который состоял из длинного маятника, который мог свободно качаться в любой плоскости и часами.
Ссылки
Homo antecessor: характеристика вымершего вида
Изобретение телескопа
Телескоп (от др.-греч. «далеко смотрю») — прибор, с помощью которого можно наблюдать отдалённые объекты путём сбора электромагнитного излучения (например, видимого света).
Существуют телескопы для всех диапазонов электромагнитного спектра:
Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также телескопами могут называть детекторы гравитационных волн.
Ещё в 385 г. до н.э. Демокрит объявил, что Млечный Путь состоит из множества звезд. Некоторые специалисты утверждают, что к такому выводу можно прийти только с помощью телескопических наблюдений. Другие указывают на сохранившиеся греческие и римские тексты в которых описывается некий оптический инструмент, похожий на сегодняшний телескоп.
Первые попытки изобретения телескопа
Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи датируемых 1509-м годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).
Чертежи телескопа Леонардо да Винчи
В последнее время изобретение первого телескопа приписывают Гансу Липпершлею из Голландии. Но мало кто знает, что задолго до него Томас Диггес, астроном, который в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала.
Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы. Скорее всего, заслуга Липпершлея состоит в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.
К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.
Галилео Галилей и телескоп
Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп.
Сначала, это была всего лишь зрительная труба — комбинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто догадался использовать на пользу астрономии эту развлекательную трубку.
Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.
Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кртным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век рефрактора в астрономии — 17 век.
XVII век в истории наблюдений за звездами
Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы.
Телескоп Яна Гевелия
Это был «воздушный телескоп» без трубы и без жёсткой связи объектива и окуляра. Телескоп подвешивался на столбе при помощи системы канатов и блоков. Для управления такими телескопами использовались специальные команды из отставных матросов, знакомых с обслуживанием такелажа.
Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров — не удавалось изготавливать линзы большого размера. К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм.
Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.
Исаак Ньютон и изобретение рефлектора
Со временем телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон — уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.
Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы.
Интересно,что космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года.
Заслуга эта целиком и полностью принадлежит Исааку Ньютону, именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.
Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов.
Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный рефлектор диаметром в 15 сантиметров.
Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.
К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны — дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого — крон и тяжелого — флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.
Телескопы и их усовершенствование в XVIII-XIX веках
После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей.
Уильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора.
Телескоп У. Гершеля
Успех побудил Гершеля начать изготовление рефлекторов большего размера.
Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см.
Благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн.
Другой астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманностей.
Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.
Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.
Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма.
В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп.
Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков рефлекторов. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более двадцати лет.
Новейшая история телескопов
В дальнейшем телескопы продолжали расти в размерах и совершенствоваться изнутри. Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА — Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом.
Большой Телескоп Азимутальный
Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени — на сегодня его качество упало на 30% от первоначального — превращает его лишь в исторический памятник науке.
К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство.
Телескопы KECK I и KECK II
Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы — главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений — на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.
В 1999 году на орбиту был выведен телескоп Хаббл. Это совместный проект НАСА и Европейского космического агентства и входит в число Больших обсерваторий НАСА.
Космический телескоп Хаббл
Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь — в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле.
За 15 лет работы на околоземной орбите «Хаббл» получил 1,022 млн изображений небесных объектов — звёзд, туманностей, галактик, планет.
А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп «Джеймс Уэбб» (JWST) с 6,5-метровым зеркалом.
История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.
Последние достижения
В 2019 году в Китае был создан самый большой телескоп в мире, его диаметр составляет 500 метров. Строительство продолжалось около 8 лет.
Стоимость радиотелескопа составляет 180 млн долларов. При этом специалисты указывают, что до этого самым крупным телескопом в мире был радиотелескоп в Пуэрто-Рико, построенный более 50 лет назад, однако его диаметр составляет чуть больше 300 метров. Китайское изобретение может серьёзно ускорить процесс открытия самых разных явлений в космосе. Также ученые отмечают, что самый большой радиотелескоп в мире будет способен обнаружить отдаленные экзопланеты только по их радиоизлучению. Кроме того, специалисты подчеркнули, что китайский радиотелескопсможет обнаружить тысячи пульсаров.
Также в китайской обсерватории будут фиксировать радиовсплески, исходящие от неизвестных источников. Китайский радиотелескоп способен улавливать даже самые слабые сигналы.
Видео
Галилео Галилей – основатель точного естествознания
Имя выдающегося итальянского учёного Галилео Галилея (Galileo Galilei) хорошо известно даже людям, далёким от физики, математики и астрономии. Его фундаментальные труды и изобретения оказали значительное влияние на развитие научной мысли XVI – XVII веков и последующих эпох.
Биография
Галилео Галилей был убеждённым рационалистом, считавшим, что все явления и законы природы имеют свои объяснения и подвластны человеческому разуму. Он прошёл яркий, интересный и во многом непростой жизненный путь, оставив глубокий след не только в итальянской, но и мировой истории.
Семья и происхождение
Родным городом Галилео Галилея была Пиза (Pisa). Будущий учёный появился на свет в 1564 году, в семье обедневшего дворянина, музыканта и композитора Винченцо Галилея (Vincenzo Galilei), в высшей степени просвещённого и образованного человека, вынужденного из-за плачевного материального состояния заниматься мелкой торговлей.
Мать Галилео, Джулиа Амманнати (Giulia Ammannati), также принадлежала к знатному роду, отличалась тяжёлым, своенравным характером, посвятила свою жизнь воспитанию детей и ведению домашнего хозяйства. Известно, что среди потомков аристократического рода (по линии отца) были учёные и врачи, а упоминания о некоторых из них, занимавших важные государственные должности во Флорентийской республике (Repubblica fiorentina), встречаются в документах, относящихся ещё к XIV веку.
Галилео был старшим из шести детей (двое умерли в младенческом возрасте). Когда ему исполнилось примерно 11 лет в поисках лучшей жизни семейство переехало во Флоренцию (Firenze), являвшуюся в тот период центром культуры, науки и искусства всей Европы.
Начальное образование
Юный Галилео рос всесторонне одарёнными ребёнком, проявлявшим талант к музыке и изобразительному искусству. Любовь к творчеству он сумел пронести на протяжении всей своей жизни, достигнув немалых успехов в этой области.
Начальное образование было получено в школе аббатства Валломброза (Abbazia di Vallombrosa), расположенной в небольшой коммуне Реджелло (Reggello), в провинции Флоренции. Галилео был прилежным учеником: в стенах монастыря он с одинаковым рвением и усердием штудировал богословие, древние языки, поэзию и риторику, сочинял стихи, отличавшиеся особым талантом и выразительностью. Жизнь в обители пришлась по душе юноше, он стал послушником, и грезил о принятии священнического сана.
Студенческие годы
Идея Галилео посвятить себя служению Богу была категорически отвергнута отцом, и в 1581 году по настоянию родителя, мечтавшего о более доходном занятии для своего отпрыска, он поступил в Пизанский университет (Universita di Pisa), на медицинский факультет.
Параллельно с основным курсом юный студент увлечённо изучал математику, геометрию, физику и астрономию. Молодой человек с головой погружался в теорию и непрестанно ставил научные эксперименты. Очень быстро он определился с делом всей своей жизни, и перешёл с медицинского факультета на математический. Ещё в студенческие годы Галилео открыл для себя гелиоцентрическую теорию Коперника, став её рьяным приверженцем.
В университете он снискал славу не только стремящегося к знаниям молодого человека, но и заядлого спорщика, не знавшего искусства дипломатии, а также имевшего всегда своё мнение, и не считавшего необходимым его скрывать. Из-за финансовых трудностей семьи обучение не удалось завершить в полном объёме, окончив лишь три курса. Несдержанность и своенравный характер юноши (унаследованный, скорее всего, от матери) сыграли с ним злую шутку. Несмотря на одарённость студента, преподавательский состав отказал в возможности продолжать учёбу бесплатно. Не получив степени профессора, Галилей вернулся во Флоренцию.
Покровительство Гвидобальдо дель Монте
К счастью, талант юноши к техническим наукам и незаурядные изобретательские способности были замечены Гвидобальдо дель Монте (Guidobaldo del Monte) – известным математиком, теоретиком механики, астрономом и философом, пользовавшимся уважением и почётом современников.
Роль этого человека, имевшего большие деньги и положение в обществе, оказалась чрезвычайно значимой в судьбе Галилео. Гвидобальдо дель Монте стал покровителем молодого учёного, он приложил все усилия, чтобы представить юное дарование великому герцогу Тосканскому, Фердинандо I Медичи (Ferdinando de’ Medici), и выхлопотал для него оплачиваемую должность профессора математики.
Так, уже в 1589 году, в 25-летнем возрасте, Галилео вернулся в стены альма-матер, и занялся преподавательской деятельностью. В Пизанском университете он читал лекции по механике и математике, ставил эксперименты, вёл непрестанную исследовательскую работу, писал трактаты. К сожалению, увлечённость техническими науками не приносила Галилео больших денег, ведь получаемое им скромное жалование в десятки раз отличалось от доходов профессора медицины.
Примечательно, что материальные трудности преследовали учёного на протяжении всей его жизни. В 1591 году умер глава семьи, и обязанности по содержанию матери и двоих сестёр легли на плечи Галилео.
Работа в Падуанском университете
В 1592 году Галилео, уже заработавший определённый авторитет в научных кругах, и имевший среди современников славу выдающегося теоретика и изобретателя, переехал в Падую (Padova), крупный город Венецианской республики (Serenissima Repubblica di Venezia). Там в течение 8 лет он преподавал математику, механику и астрономию. Галилео возглавлял кафедру в Падуанском университете (Universita degli Studi di Padova), считавшимся старейшим и лучшим образовательным центром Европы, и это был самый плодотворный период его научной деятельности.
Личная жизнь учёного
Главной и единственной настоящей страстью учёного была наука, хотя биографам доподлинно известно об истории любви Галилео к женщине, подарившей ему двух дочерей и сына. Уроженка Венеции, Марина Гамба (Marina di Andrea Gamba), принадлежала к небогатому роду, и имела более низкий социальный статус. Официальный церковный брак с ней так и не был заключён, даже несмотря на наличие троих общих детей. Известно также что пара жила вместе в период, когда Галилео работал в Падуе.
Уезжая из города, профессор забрал дочерей, а спустя ещё некоторое время и своего младшего отпрыска. Официально учёный признал лишь сына (отцовство было подтверждено им в 1619 году), дочери числились незаконнорождёнными, и провели жизнь в монастыре при церкви святого Матфея в Арчетри (Chiesa di San Matteo in Arcetri), небольшом посёлке недалеко от Флоренции. Появившись на свет вне брака, они не имели в те времена ни малейших шансов на счастливое замужество. Связь с детьми Галилео сохранил на протяжении всей жизни.
Жизнь и работа во Флоренции, отношения с католической церковью
Слава не избавила Галилео от непрестанной нужды в деньгах. В 1610 году, в надежде поправить своё материальное состояние, учёный с радостью принял приглашение переехать во Флоренцию, там он прожил до 1632 года. Высокооплачиваемая работа в качестве советника и учителя при дворе герцога Тосканского Козимо II Медичи (Cosimo II de’ Medici) сулила избавление от накопившихся долгов. При этом за ним формально осталась должность профессора Пизанского университета, не требующая обременительных обязанностей чтения лекций.
Будучи «первым математиком и философом» при дворе герцога, Галилео активно продолжал свои астрономические изыскания. Он широко пропагандировал гелиоцентрическую систему мира, собирал научные доказательства, вызывая тем самым раздражение и недовольство среди многих представителей церкви и последователей учений, выдвинутых Аристотелем и Птолемеем. К этому периоду Галилео, жаждавшему постигнуть тайны небесных тел, уже удалось сделать ряд революционных открытий, в число которых входили:
В 1611 году учёный приехал в Рим, на приём к Папе Павлу V, с тем чтобы доказать главе католической церкви необходимость следовать в ногу с научной мыслю. Он демонстрировал изготовленный им телескоп, объяснял суть своих открытий и был в целом встречен с теплотой и благосклонностью. Примечательно, что несмотря на последующие конфликты с церковью, Галилео всегда считал себя «добрым католиком».
Обвинения в ереси
С 1611 года произошёл ряд событий, существенно повлиявших на дальнейшую судьбу Галилео. Сначала, воодушевлённый добрым к себе расположением высшего духовенства, он написал (а позже опрометчиво опубликовал) письмо своему ученику и другу Бенедетто Кастелли (Benedetto Castelli), в котором открыто заявил о том, что Священное Писание хорошо лишь для веры и покаяния, и не может служить науке авторитетным источником знаний об объектах и явлениях природы.
Потом, в 1613 году вышла в свет книга Галилео «О солнечных пятнах», суть которой заключалась в признании правоты теорий Коперника. В результате по прошествии двух лет инквизиторами было открыто первое дело против учёного. Суд над Галилео состоялся в Риме, 1616 году, в этот же период церковь официально признала гелиоцентризм опасной ересью, и хотя учёный был оправдан, при вынесении вердикта его обязали отказаться от открытой поддержки модели мира Коперника и попирания архаичных авторитетов.
В 1633 году состоялся второй судебный процесс над учёным. Поводом к повторным преследованиям инквизиции послужила публикация очередного трактата Галилео «Диалог о двух системах мира», написанного на итальянском языке для доступности широкому кругу читателей.
После первого же допроса Галилео заключили под стражу, он провёл в заточении 18 дней. Многие биографы склонны предполагать, что учёного даже подвергали жестоким пыткам. Он был признан виновным в ереси, и приговорён к пожизненному заключению (изменённому позже на домашний арест), инквизиторы также потребовали от Галилео отречься от всех своих убеждений (что он и сделал) и запретили публиковать любые теоретические и исследовательские работы.
Легендарная фраза, «Eppur si muove» («И всё-таки она вертится»), приписываемая учёному, на самом деле никогда ему не принадлежала, и является не более чем художественным вымыслом.
Последние годы жизни, кончина и посмертная реабилитация
Учёный тяжело болел в старости, а в 1637 году Галилео и вовсе лишился зрения. Он не мог публиковать свои труды, но не переставал заниматься наукой даже несмотря на ухудшившееся состояние здоровья. Инквизиторы постоянно следили за пленником до конца его дней, затрудняя общение с друзьями и учениками.
Остаток жизненного пути он провёл в небольшой вилле, расположенной в Арчетри (Arcetri), пригороде Флоренции, недалеко от монастыря, где служили его дочери. Здание сохранилось и до наших дней и является сейчас домом-музеем Галилея (Villa Il Gioiello), находящимся с 1942 года в собственности факультета астрономии Флорентийского университета (Universita degli Studi di Firenze, UNIFI).
В 1642 году великий учёный скончался в возрасте 78 лет, в окружении своих последователей и сына. Церковь запретила погребение еретика в фамильном склепе и возведение ему памятников. Последний представитель знаменитого рода, внук Галилео, принял монашеский постриг, и сжёг ценные рукописи своего деда. В 1737 году останки учёного были перезахоронены в базилике Санта-Кроче (Basilica di Santa Croce) во Флоренции.
Гробница украшена мраморной фигурой Галилео и аллегорическими статуями в стиле позднего барокко, олицетворяющими Геометрию и Астрономию. Работу над декорированием саркофага выполнил итальянский скульптор Джованни Баттиста Фоджини (Giovanni Battista Foggini).
Лишь во второй половине XX века католическая церковь оправдала Галилео, сняв с него все обвинения, в 1992 году по результатам работы специальной комиссии Римский Папа Иоанн Павел II официально признал ошибку инквизиции.
Открытия учёного
Галилео по праву считают основоположником точного естествознания. Его пытливый ум позволил открыть и сформулировать законы природы, на которых базируется физика как науку в целом и механика в частности, в сегодняшнем их понимании. Галилео ввёл новые методы исследования, основанные не на эфемерных рассуждениях и ссылках на авторитетные догмы, а на наблюдениях, опытах, и математическом анализе. В число открытий, кардинально изменивших научное мировоззрение, входят:
Учёный внёс также существенный вклад в развитие математической теории вероятности и множеств. Он проводил исследования природы света, измерял плотность воздуха, занимался вопросами физической оптики. К главным изобретения Галилео, повлиявшим на многие сферы жизни человечества, относятся:
Галилео занимался изобретательством с ранних лет и до глубокой старости, он постоянно придумывал новые приборы и приспособления.
Создание телескопа
Создание телескопа считается одним из главных и значимых изобретений Галилео, ведь устройство дало мощный толчок к познанию солнечной системы.
Первый экземпляр был представлен широкой общественности в 1609 году. За основу изобретения учёный, занимавшийся ранее совершенствованием технологии шлифовки оптических линз, взял «зрительную трубу», придуманную Иоганном (Хансом) Липперсгейем, очковым мастером из Мидделбурга (Нидерланды).
Галилей усовершенствовал голландское оптическое устройство и подарил ему нынешнее название, переводящееся дословно с древнегреческого языка «далеко смотрю». Итальянскому профессору удалось, в отличие от его предшественника, добиться тридцати кратного увеличения изображения.
С помощью своего прибора он создал подробные зарисовки лунной поверхности, обнаружил пятна на Солнце, изучил природу Млечного пути, сделал предположение о существовании иных галактик и совершил ряд других революционных открытий, описанных в трактате «Звёздный вестник», изданном в 1610 году. Книга стала настоящей сенсацией в Европе, слава о ней дошла даже до Китая. Примечательно, что Галилей создал за свою жизнь около сотни телескопов, он дарил экземпляры изобретения представителям высшего духовенства и монаршим особам, пытался даже наладить промышленное производство, но не желал делиться секретом линз с коллегами астрономами.